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ABSTRACT

As U.S. regional electricity markets continue to refine their market structures, designs and

rules of operation in various ways, two critical issues are emerging. First, although much expe-

rience has been gained and costly and valuable lessons have been learned, there is still a lack of a

systematic platform for evaluation of the impact of a new market design from both engineering

and economic points of view. Second, the transition from a monopoly paradigm characterized

by a guaranteed rate of return to a competitive market created various unfamiliar financial

risks for various market participants, especially for the Investor Owned Utilities (IOUs) and

Independent Power Producers (IPPs). This dissertation uses agent-based simulation methods

to tackle the market rules evaluation and financial risk management problems.

The California energy crisis in 2000-01 showed what could happen to an electricity market

if it did not go through a comprehensive and rigorous testing before its implementation. Due

to the complexity of the market structure, strategic interaction between the participants, and

the underlying physics, it is difficult to fully evaluate the implications of potential changes to

market rules. This dissertation presents a flexible and integrative method to assess market

designs through agent-based simulations. Realistic simulation scenarios on a 225-bus system

are constructed for evaluation of the proposed PJM-like market power mitigation rules of the

California electricity market. Simulation results show that in the absence of market power

mitigation, generation company (GenCo) agents facilitated by Q-learning are able to exploit

the market flaws and make significantly higher profits relative to the competitive benchmark.

The incorporation of PJM-like local market power mitigation rules is shown to be effective in

suppressing the exercise of market power.

The importance of financial risk management is exemplified by the recent financial crisis.
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In this dissertation, basic financial risk management concepts relevant for wholesale electric

power markets are carefully explained and illustrated. In addition, the financial risk manage-

ment problem in wholesale electric power markets is generalized as a four-stage process. Within

the proposed financial risk management framework, the critical problem of financial bilateral

contract negotiation is addressed. This dissertation analyzes a financial bilateral contract

negotiation process between a generating company and a load-serving entity in a wholesale

electric power market with congestion managed by locational marginal pricing. Nash bargain-

ing theory is used to model a Pareto-efficient settlement point. The model predicts negotiation

results under varied conditions and identifies circumstances in which the two parties might

fail to reach an agreement. Both analysis and agent-based simulation are used to gain insight

regarding how relative risk aversion and biased price estimates influence negotiated outcomes.

These results should provide useful guidance to market participants in their bilateral contract

negotiation processes.
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CHAPTER 1. INTRODUCTION

1.1 Research Problem Statement

U.S. regional electricity markets continue to refine their market structures, designs and

rules of operation in various ways. There are ongoing debates over new market design issues

such as how to design market power mitigation (MPM) rules, how to properly implement a

retail electricity market, and how to effectively incorporate ancillary service (AS) markets.

Although much experience has been gained and costly and valuable lessons have been learned,

there is still a lack of a systematic platform for evaluation of the impact of a new market design

from both engineering and economic points of view.

The transition from a monopoly paradigm characterized by a guaranteed rate of return to

a competitive market created various unfamiliar financial risks for various market participants,

especially for the Investor Owned Utilities (IOUs) and Independent Power Producers (IPPs).

Facing the new and evolving market and regulatory environment, most IOUs and IPPs have

not been able to set up a general risk management framework that can facilitate their decision

making with regard to day-ahead market trading, bilateral contract negotiation and generation

investment.

This research is intended to provide a systematic framework and general methodology to

address these two challenging issues. Specifically, the purpose of this research is to develop

a systematic platform to evaluate the impact of existing or new market designs from both

engineering and economic points of view and to provide market participants with a unified

methodology that could facilitate their management of financial risk.

A more detailed motivation for the intended research is provided in the next section.
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1.2 Background Context and Motivation

The electricity supply chain can be divided into three segments: generation, transmission

and distribution. Under the U.S. electricity sector’s legacy industry structure, within a de-

fined geographical area, all three segments are typically owned by a utility that has been either

investor-owned and state-regulated, or owned by the local municipality [1]. These utilities in

turn had de facto exclusive franchises to supply electricity to residential, commercial and indus-

trial retail consumers within their service areas [2]. Many of these vertically integrated utilities

are control area operators that are responsible for operating portions of the synchronized AC

networks in the U.S., subject to rules established by regional reliability councils and a variety

of bilateral and multilateral operating agreements [3]. Under the old regulatory structure, the

state or municipal governments regulate the electricity retail rates in such a way that util-

ity shareholders are guaranteed a reasonable return on their investments. In this regulatory

framework, the risks associated with utilities’ generation investments and bilateral contracting

decisions are not borne by themselves but by their retail customers [4].

Until the beginning of 1970, the old vertically integrated monopoly model functioned quite

well. The improved technology and further exploitation of economics lowered the electricity

prices in real terms and kept nominal prices largely unchanged over the 1960s [5]. Since then

the change in a number of fundamental factors and the occurrences of a series of incidents

contributed to the accumulation of dissatisfaction toward the vertically integrated monopoly

model. On the technology front, the development of more efficient generating technologies

such as combined-cycle gas turbines reduced economies of scale and cut the lead-time for

adding new generating capacity [6]. This leads to a question on the legitimacy of generation

sector’s natural monopoly status. The first and second oil price shocks during 1973-1974 and

1979 have drove electricity prices up 26% in 1974 and 19% 1980 respectively. The increased

safety regulations due to the Three Mile Island nuclear power plant in 1979, together with

unexpected construction overruns and higher-than-anticipated operating costs and disposal

costs have increased the costs of nuclear power [1]. However, under the monopoly model,

electricity customers still had to pay for the decisions to build the nuclear power plants. During
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the same period, the disparity in electricity prices within the U.S. began to rise which is partly

due to the bad investments in some regions. All these events and changes have leveled up the

political and social pressures to reform the electricity industry.

The reform goal has been to create new institutional arrangements for the electricity sector

that provide long-term benefits to society. It is also to ensure that an appropriate share of these

benefits goes to consumers through prices that reflect the efficient economic cost of supplying

electricity and service quality attributes that reflect consumer valuation [2]. It is projected that

those benefits will be realized through providing the proper price signal to stimulate technology

innovation, better investment and consumption decisions.

Since the late 1980s, restructuring initiatives have been gradually taken to reform the

electricity industry. The Public Utility Regulatory Policies Act of 1978 defined a new class of

energy producers named Qualified Facilities which typically own co-generators or renewable

resources. This federal law introduces some competition on the generation side by requiring

utility companies to purchase energy from the qualified independent power producers at avoided

cost rates which tend to be favorable to the qualified facilities.

The Energy Policy Act of 1992 established a new category of electricity producer called

the exempt wholesale generator that is allowed to enter the wholesale electricity market to sell

power to utilities. The law also mandated Federal Energy Regulatory Commission (FERC) to

provide these generators with open access to the national power transmission grids.

In response to the mandate, FERC made two landmark Orders 888 [7] and 889 [8] which

require the owners of transmission facilities to make transmission services available on the open

market and establish Open Access Same-time Information System (OASIS) which provides

customers and potential open access transmission customers with information that will enable

them to obtain open access non-discriminatory transmission service. FERC also suggested the

concept of an Independent System Operator as one way to satisfy the requirement of providing

non-discriminatory access to transmission.

To overcome the existing barriers and impediments to achieving fully competitive electricity

markets, and to promote efficiency in wholesale power markets, FERC issued Order 2000 [9].
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The order encouraged voluntary formation of Regional Transmission Organizations (RTOs) to

administer the transmission grid on a regional basis throughout North America and required

all public utilities that own, operate or control interstate electric transmission to participate

in a Regional Transmission Organization (RTO).

To clarify the Standard Market Design proposed in a Notice of Proposed Rulemaking

(NOPR) issued in Aug 2002, FERC issued a white paper [10] titled “Wholesale Power Market

Platform” that lays out key design elements that are needed for the success of well functioning

wholesale markets. This design recommends the operation of wholesale power markets by

Independent System Operators (ISOs) or RTOs using locational marginal pricing to price

energy by the location of its injection into or withdrawal from the transmission grid [11].

After nearly 30 years of restructuring and reforms, the U.S. electricity industry has made a

lot of progress towards a well-functioning competitive market. However, there have also been

some major setbacks in the reform process that are painful but costly lessons to learn. Thanks

to FERC’s “open access” Orders 888 and 889, transmission owning utilities in the U.S. now

have made available reasonably standardized cost-based transmission service tariffs to support

the provision of transmission service and provide easily available real-time information about

the availability and prices of transmission service on their networks [12]. FERC’s Order 2000

has fostered the formation and expansion of ISOs/RTOs. Table 1 indicates that as of 2008,

over 50% of the generating capacity in the U.S. is operating within an ISO/RTO.

Table 1.1 Total generation capacity within each ISO/RTO region in 2008

ISO/RTO Total Installed Capacity (MW)

ISO-New England 31,088

New York ISO 38,900

California ISO (CAISO) 52,000

SPP (RTO) 57,765

ERCOT 75,504

PJM (RTO) 164,895

Midwest ISO (MISO) 170,000

ISO/RTO Total 590,152

Total U.S. Generating Capacity 1,109,017
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Various regulations in the reform process have gradually eliminated the entry barrier and

encouraged Independent Power Producers (IPPs) to enter the electricity market to compete

with investor owned utilities. More generating capacity has been built in the United States

between 2000 and 2004 than in any earlier 5-year period [13]. IPPs have sponsored the largest

portion of the dominated generation additions (gas-fired generation) in this period.

In spite of the progress made towards well-functioning competitive electricity markets, some

problems have emerged in the reform progress. Those problems and challenges are faced by

not only regulators and ISOs but also market participants such as IOUs and IPPs.

A textbook example of electricity market restructuring that went wrong is the California

market. The California energy crisis in 2000-01 showed what could happen to an electricity

market if it did not go through a comprehensive and rigorous test before its implementation.

California’s market design departed from the regulator’s blue book, and included complicated

rules that basically ignored the fundamentals of how a power system operates [5]. The required

reliance on a spot market in place of having a mix of short and long-term contracts, and

a congestion pricing system that did not properly handles intra-zonal congestion, created a

market design that was vulnerable to market manipulation. The combination of a poor market

design, shortage of generation capacity and available power imports, the abuse of market power

by market participants and over-divesture of generator by the three major IOUs, resulted in

the collapse of California market. The crisis rendered two major IOUs insolvent, led to rotating

blackouts on eight days in Winter and Spring of 2001 and also left California with huge state

budget deficits.

Facing an unfamiliar and evolving market and regulatory environment, IOUs and IPPs

have also shown signs of inability to handle the new challenges, especially the novel task of

financial risk management in wholesale power markets. Given the market entry opportuni-

ties, many IPPs have joined the wholesale power market to compete with IOUs and municipal

utilities. However, it is essential to have a clear understanding of the way a wholesale power

market operates in the presence of strategic interaction among market participants. Without

a systematic methodology to manage financial risk in wholesale power markets, poor decisions
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could be made. Being excessively optimistic regarding their predicted hours of dispatch and

the predicted persistence of low natural gas prices, on the national level the IPPs over invested

in combined cycle gas turbine (CCGT) plants from 2001-2004. Without employing a compre-

hensive risk management plan that properly hedges the risks associated with the operation and

investment of the CCGT plants, some IPPs had to face financial difficulties in the following

years. The three big IOUs in the California sold almost all of their fossil-fuel plants by 2000.

This over-divesture has taken away the IOUs’ ability to hedge against the risks associated with

volatile wholesale electricity prices. Together with a fixed retail rate put in by regulators, these

decisions rendered two of three IOUs insolvent when the wholesale market prices rose above

the fixed retail price and remained there for an extended period of time.

To date, regulators are still pondering over the question of how to design a competitive

power market that achieves both efficacy and fairness. The electricity market participants

are still striving to develop effective decision support and risk management tools that could

assist day-ahead energy market trading, negotiation of bilateral contracts and expansion of

generation units and transmission networks. The difficulties with market design issues and

risk management problems arise from the complex interactions among strategic behaviors

of market players, various layers of market structure, and the complex underlying physical

network.

1.3 Literature Review

1.3.1 Evaluating Electric Power Markets Rules and Analyzing Strategic Bidding

Behaviors

The literature on the interaction between strategic bidding and market designs can be

categorized into two approaches: equilibrium analysis and agent-based simulation. In the

equilibrium analysis approach, oligopoly models such as Bertrand, Cournot, and supply func-

tion equilibrium (SFE) are used to model the stylized strategic behavior of market participants.

Younes and Ilic [14] modeled the oligopolistic competition in the electricity market with SFE

and Bertrand models. They recognized that inelastic load and low transmission capacities may
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give generators incentives to strategically constrain the network and profit from the high prices

in isolated submarkets. Yao et al. [15] examined the two-settlement electricity market taking

into account congestion, demand uncertainty and system contingencies with a Cournot model

showing that it results in lower spot equilibrium prices at most buses than a single settlement.

Li and Shahidehpour [16] analyzed the strategic bidding behavior and potential market power

of generation companies with SFE model. Their conclusion is that setting a lower price cap is

a proper measure for mitigating market power in an electricity market. Niu et al. [17] modeled

the electric firms’ bidding behaviors with a SFE model, and studied the effects of forward con-

tracts on the ERCOT market. They found that a high volume of forward contracts decreases

the incentive of major market players to raise real-time market prices. Liu et al. [18] studied

the impact of learning behavior of generation companies on electricity-spot-market equilibrium

under repeated linear supply-function bidding. The result is that under certain conditions the

overall learning behavior will reduce market-clearing prices while in some other conditions the

results are just the contrary.

Although the equilibrium analysis yielded some useful results in the oligopoly electricity

market, it may oversimplify the complicated market mechanism [19]. The accumulated bidding

experience from interacting with other market participants in repeated auctions may change

the perception a player has of others [20]. The advantage of a learning algorithm is that it

could capture the market dynamics and provide better insights into market behaviors. In the

agent-based approach, variations of reactive reinforcement learning and anticipatory reinforce-

ment learning have been used to model the behaviors of generation companies. The learning

algorithm that Bunn and Oliveira designed [19] for generators shares the same essence with

reactive reinforcement learning algorithm. The average reward γ-greedy reinforcement learn-

ing (RL) method was used in [21] to model the learning and bidding processes of generation

companies. These generation companies are incorporated in a nonzero sum stochastic game

model to assess day-ahead (DA) market power in different auction mechanisms. The average

reward γ greedy reinforcement learning method is a RL method that uses average reward in the

updating process and parameter γ to balance the exploration and exploitation. The learning
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configuration for generation companies in [22] is a version of stochastic reactive reinforcement

learning developed by Roth and Erev [23]. A test bed was built to investigate the effects of

demand-bid price sensitivity and supply-offer price caps on locational marginal prices (LMPs).

Yu et al. [24] modeled generation companies as Q-Learning agents. The results demonstrated

that Q-Learning facilitates the GenCo agent exploiting the market in the absence of a MPM

process. Several papers [25, 26, 27, 28] have investigated the use of agent-based simulation to

evaluate electricity market rules.

1.3.2 Financial Risk Management and Bilateral Contract Negotiation in Restruc-

tured Electric Power Markets

Within the field of power economics, only a few researchers to date have studied the bilateral

contract negotiation process. Khatib and Galiana [29] propose a practical process in which the

bargainers take both benefits and risks into account. They claim that their proposed process

will lead to agreement on a mutually beneficial and risk-tolerable forward bilateral contract.

Song et al. [30] and Son et al. [31] analyze bidding strategies in a bilateral market in which

GenCos submit bids to loads. Necessary and sufficient conditions for the existence of a Nash

equilibrium in bidding strategies are then derived.

In a series of three studies, Kockar et al. [32, 33, 34] examine three important questions

focusing on mixed pool/bilateral trading. In the first two studies the authors study the effects

on portfolio performance of varying the relative level of pool versus bilateral trading given

various curtailment strategies for firm and nonfirm bilateral contracts. In the third study the

authors propose an incremental procedure to unbundle and price various services offered in an

electricity market that permits both pool and bilateral trades.

Although the number of studies focusing on bilateral contract negotiation in electric power

markets is small, a large number of researchers in power economics have examined the related

topics of risk management and portfolio optimization. Only a small sampling of the literature

will be noted here.

Regarding risk management in wholesale electric power markets, Liu and Wu [35] propose
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a sequential optimization method to solve an electric energy allocation problem from the per-

spective of a profit-seeking GenCo facing an action-conditioned probability density function

(pdf) for profits. They assume the GenCo’s willingness to accept reductions in return in order

to achieve reductions in risk is expressible in terms of a “return-risk utility function” with

return measured by expected profit and risk measured by profit variance. Li et al. [36] use

the same form of return-risk utility function to investigate the properties of a risk-constrained

bidding strategy for financial transmission rights. Botterud et al. [37] compare and contrast

the use of different objective functions for the evaluation of the bidding strategies of wind

power producers, including a return-risk utility function with risk measured by conditional-

value-at-risk. Shahidehpour [38, Chpt. 7] provide a general introduction to risk analysis in

power markets with a particular stress on the use of value-at-risk measures.

Risk management issues arising in retail electricity markets are also analyzed in a number

of studies. Bartelj et al. [39] study expected profit and conditional-value-at-risk outcomes for

a retail supplier under alternative price volatility and retail contract maturities. Carrión et

al. [40] propose a risk-constrained stochastic programming framework to decide which forward

contracts a retailer supplier should offer its retail customers, and at what price. The retailer

supplier’s objective is assumed to be the maximization of expected profit given a prespecified

level of risk. Gabriel et al. [41] propose a stochastic optimization model as a guide for the

contractual arrangements of a retail supplier that takes into account both expected net return

and risk exposure for the supplier. A “third way” approach to the design of retail utilities,

between vertical integration and full divestment, is proposed by Chao et al. [42] based in part

on principles of risk management.

Regarding portfolio optimization, Bjorgan et al. [43] identify a preferred portfolio of con-

tracts by using efficient frontier theory. Tanlapco et al. [44] compare direct and cross-hedging

strategies for a GenCo that uses future contracts to manage its risk. The authors show that, for

all four spot markets they study, a hedging strategy that uses electricity future contracts yields

lower risk than a cross-hedging strategy, all else equal. Denton et al. [45] analyze the risks

encountered by electric energy asset operators in the short, intermediate and long term. Real
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option models and stochastic optimization techniques are proposed to measure and manage

these risks. Using computer simulations, Das and Wollenberg [46] assess a GenCo’s risk asso-

ciated with random forced outages in a day-ahead and spot energy market. Bjorgan et al. [47]

examine the pricing of electricity contracts that allow flexible scheduling of electric energy

based on the principle of no-arbitrage. Arbitrage opportunities and an optimized scheduling

policy link the contract price to the spot price.

Finally, regarding reviews and tutorials, Dahlgren et al. [48] provide a comprehensive lit-

erature review of risk assessment in electric energy trading. Deng and Oren [49] present a

thorough review of electricity financial instruments as well as general approaches to the pric-

ing of these instruments. Liu et al. [50] survey risk management techniques widely used in the

financial field and discuss their application to electric power markets. Yu et al. [51] discuss

alternative definitions and measures of risk. They also examine and concretely illustrate the

complicated and risky strategic decision making required of modern power traders operating

in interlinked financial and physical energy markets.

1.4 Contribution of this Dissertation

This dissertation is focused on the development of an integrated framework for assessing the

performance of electricity market rules and risk management methodologies for the electricity

market participants. The original contributions of this dissertation are summarized as follows:

1. Proposed a flexible and integrative methodology and software platform capable of eval-

uating new electric market designs from both engineering and economic points of views. This

allows the regulators and policy makers to conduct a comprehensive and rigorous testing before

implementing new market design features. With this innovative methodology and simulation

tool at hand, costly mistakes such as the California energy crisis may be avoided.

2. This dissertation is one of the first to utilize the proposed agent-based simulation

methodology and platform to study a realistic market design feature in a large scale test system.

Specifically, before its implementation, the effectiveness of market power mitigation (MPM)

rule proposed by CAISO is evaluated in a realistic 225-bus WECC system. The simulation
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results provide regulators with insights into how well the MPM rule is able to suppress implicit

price collusion among pivotal GenCos with market power.

3. Developed a unified methodology, a four-stage process, to facilitate market participants’

management of financial risk in wholesale electric power markets. It helps the market partic-

ipants to restructure and retool their risk management practices in an evolving and volatile

market environment.

4. Constructed an analytical and computation model to analyze the financial bilateral

contract negotiation problem between a GenCo and a LSE within the proposed financial risk

management framework. The model is capable of predicting the negotiation results under

varied conditions and identifying circumstances in which the two parties might fail to reach

an agreement. The insights gained regarding how relative risk aversion and biased price esti-

mates influence negotiated outcomes provide valuable guidance to market participants in their

bilateral contract negotiation process.

1.5 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the method-

ology for the evaluation of electric power market rules, based on the results of Yu et al. [52].

A flexible and integrative method to assess market designs through agent-based modeling is

presented. As a case study, realistic simulation scenarios are constructed for evaluation of the

proposed PJM-like market power mitigation rules currently in use by the California Indepen-

dent System Operator (CAISO). Chapter 3 presents the problem formulation and results on

financial risk management in wholesale electric power markets, based on the results of Yu et al.

[51, 53]. In Chapter 3, basic financial risk management concepts relevant for wholesale elec-

tric power markets are carefully explained and illustrated. Solving financial risk management

problem in wholesale electric power markets is generalized as a four-stage process. Within

the proposed financial risk management framework, the critical problem of financial bilateral

contract negotiation is addressed. Finally, Chapter 4 provides a summary of this dissertation

contribution and briefly discusses the proposed future research directions.



www.manaraa.com

12

CHAPTER 2. EVALUATION OF WHOLESALE ELECTRIC POWER

MARKET RULES

The California energy crisis in 2000-01 showed what could happen to an electricity market

if it did not go through a comprehensive and rigorous testing before its implementation. Due

to the complexity of the market structure, strategic interaction between the participants, and

the underlying physics, it is difficult to fully evaluate the implications of potential changes to

market rules. This research presents a flexible and integrative method to assess market designs

through agent-based modeling. Realistic simulation scenarios are constructed for evaluation of

the proposed PJM-like market power mitigation rules of the California electricity market. Sim-

ulation results show that in the absence of market power mitigation, GenCo agents facilitated

by Q-learning are able to exploit the market flaws and make significantly higher profits relative

to the competitive benchmark. The incorporation of PJM-like local market power mitigation

rules is shown to be effective in suppressing the exercise of market power.

2.1 Nomenclature

i GenCo agent index.

j LSE index.

ASjh Average per MW consumed ancillary services price charged to load serv-

ing entity j at hour h.

cBi Multiplier of the supply offer for GenCo i.

cresi Bidding price for spinning reserve capacity of unit i.

creg,upi Bidding price for regulation up capacity of unit i.

creg,down
i Bidding price for regulation down capacity of unit i.
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Ck(h) LMP of real power on load bus k at hour h.

CG
jh LMP of real power at hour h for LSE j’s unit.

Creg,up
jh Marginal price of regulation up at hour h.

Creg,d
jh Marginal price of regulation down at hour h.

Cres
jh Marginal price of spinning reserve at hour h.

F l
max Thermal limit of transmission line l.

GSFl−k Generation shift factor to line l from bus k.

I Set of GenCo agents.

Ljh Total MW load of LSE j at hour h.

Nb Number of buses in the system.

Nl Number of lines in the system.

PG∗

jh MW power output scheduled at hour h.

P reg,up∗
jh Reserved capacity for regulation up at hour h.

P reg,d∗
jh Reserved capacity for regulation down at hour h.

P res∗
jh Reserved capacity for spinning reserve at hour h.

Pk Net power injection at bus k.

Pgk Total MW power generation at bus k.

PG
ih Unit i MW power generation at hour h.

Pdk Total MW demand at bus k.

P reg,down
ih Unit i regulation down capacity reserved at hour h.

P reg,up
ih Unit i regulation up capacity reserved at hour h.

P res
ih Unit i spinning reserve capacity reserved at hour h.

PLk(h) MW load of load bus k at hour h.

Rj Retail rates of LSE j’s serving area.

Rreg
i Regulation ramp rates of unit i.

Rres
i Operating reserve ramp rates of unit i.

Roper
i Operational ramp rates of unit i.
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Rgreq,dh System’s requirement for regulation down at hour h.

Rgreq,uh System’s requirement for regulation up at hour h.

Rsreqh System’s requirement for spinning reserve at hour h.

τ Delivery time requirement for ancillary service.

2.2 Local Market Power: Problem Description

Local market power has been known as an issue for electricity markets due to limited trans-

mission capabilities, lack of economical electricity storage devices and short-term inelasticity

of demand. During certain peak hours, electricity markets can be temporarily isolated into

several sub-regions by N-1 and transmission thermal limit constraints. Hence, generators that

possess potential local market power could leverage it to make profits through either economi-

cal or physical withholding. Furthermore, generation companies can repeatedly play in similar

market scenarios and learn over time to compete less aggressively [54, 55]. Pivotal generation

companies might be able to elicit collusive strategies from others by punishing un-cooperative

bidding behaviors. To address the problem of local market power, various types of market

power mitigation (MPM) rules have been proposed and implemented in the industry. How-

ever, the effectiveness of those rules against strategic bidding market players with learning

capabilities has not been extensively investigated. In general, the field of strategic bidding in

an electricity market will remain an open research area for some time.

2.3 Problem Formulation

An electricity DAM is composed of interacting units: market operator, generation compa-

nies and load serving entities. Each of them has its own goal to achieve and will not only react

to changes in the market condition but also try to exert some degree of influence in the market

environment. An important attribute of the DAM is that it exhibits properties arising from

the interaction in the market that are not properties of the individual units themselves. There-

fore, to evaluate the effectiveness of market rules of the DAM, a MAS is proposed that models

the complex market dynamics among the traders. The problem formulation is motivated by
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CAISO’s market design.

2.3.1 Multi-agent System Structure

The DAM is modeled as a MAS with three types of interacting agents: GenCo agents,

load serving entities (LSEs), and a market operator (MO). The DAM works as follows. Before

day D begins, MO gathers the load prediction data from LSEs, and publishes the forecasted

zonal load data for day D+1. On the morning of day D, LSEs submit their demand bids

and possibly supply offers; GenCo agents submit their supply offers for DAM to MO. The

MO then performs MPM and runs the market clearing software. Refer to section 2.3.4 where

details of MPM and the market clearing software are discussed. The market-clearing software

determines the hourly dispatch schedules to minimize the cost of purchasing energy and 100%

of the AS requirement and the corresponding LMPs for energy and AS. In this MAS, MO

could also perform the AS evaluation based on the market clearing results by simulating the

AGC performance of the interconnected power system [56]. At the end of the process, MO

sends the dispatch schedules, LMPs and settlement information to GenCo agents and LSEs

for day D+1.

2.3.2 GenCo Agent Model

GenCo agents sell bulk power to DAM. For simplicity, it is assumed that each GenCo agent

has only one generation plant. However, this model can be extended to permit GenCo agents

with multiple generation plants. Suppose the MW power output of generator i at some hour

h is PG
ih. For generator i, the variable production cost at hour h is represented by a quadratic

form:

Ci(P
G
ih) = ai · P

G
ih + bi · (P

G
ih)

2 (2.1)

In the above equation, ai and bi are given constants. By taking derivatives on both sides

of (2.1), the marginal cost function for generator i is obtained, i.e.,
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MCi(P
G
ih) = ai + 2 · bi · P

G
ih (2.2)

On each day D, the GenCo agent submits to DAM a supply offer for day D+1 that includes

two components. The first component is its reported marginal cost function given by:

MCi(P
G
ih) = cBi [ai + 2 · bi · P

G
ih] (2.3)

Notice that there are other alternatives to exert market power through submitting reported

marginal cost functions, e.g., adding a constant term or allowing both the slope and intercept

of the reported marginal cost function to be decision variables.

In this research, it is assumed that the GenCo could exercise market power only through

economical withholding. However, the modeling methodology can be extended to allow the

GenCo to consider a combination of both economical and physical withholding.

The second component is its reported bidding price for AS including its bidding price for

spinning reserve capacity cresi , regulation up capacity creg,upi , and regulation down capacity

creg,down
i . To provide regulation up or spinning reserve ancillary service, the units have to be

synchronized and able to deliver the reserved capacity within 10 minutes. The difference is that

to provide regulation up ancillary service, the unit must be able to receive AGC signals. This is

not a requirement for providing spinning reserve ancillary service. Each generator is assumed

to have a set of benchmark bidding prices for AS. The reported prices of AS are calculated as

the benchmark price plus a markup which was a decision variable for the generation company.

There are several AS offer price mark-ups that GenCos could choose from. The Q-learning

algorithm illustrated in section 2.4.2 allows the GenCos to learn from past bidding experience

and to decide which mark-ups combination is most profitable under each market condition. It

is assumed that the bidding markups for spinning reserve capacity and regulation up capacity

are identical for the same unit. In addition, the bidding markup for regulation down capacity

is assumed to be zero. Suppose on day D, GenCo agents submit their supply offers for day

D+1 to MO, and the market clearing program calculates LMPs for real power and AS, and
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dispatch schedules. Then GenCo agent i’s net earnings on day D+1 is obtained by summing

over the 24-hour net earnings on that day.

2.3.3 Load Serving Entity Model

LSEs purchase bulk power from the DAM to serve load. It is assumed that some LSEs also

have generation units. If a LSE is a net buyer, then its motivation in offering its generation

would be to reduce the cost of energy and AS. Suppose the set of buses where LSE j serves

loads is Lj . On day D, LSE j submits a fixed load profile for day D+1. The load profile

specifies 24 hours of MW power demand PLk(h), h=0...23, at each of its load buses k ∈ Lj .

Suppose, LSE j submits its own generator j’s reported offer price for spinning reserve capacity

cresj , regulation up capacity creg,upj , regulation down capacity creg,down
j and reported marginal

cost function MCj(P
G
jh) = cBj [aj + 2 · bj · P

G
jh] to the DAM for day D+1. Then LSE j’s profit

on day D+1 is obtained by summing over the 24-hour net earnings on that day, i.e.,

πjD+1 =
23∑
h=0

[PG∗

jh CG
jh + P reg,up∗

jh Creg,up
jh +P reg,d∗

jh Creg,d
jh + P res∗

jh Cres
jh − Cj(P

G∗

jh ) + LjhRj

−
∑
k∈Lj

PLk(h)Ck(h)− LjhASjh] (2.4)

The average per MW consumed ancillary services price charged to LSE j at hour h, ASjh

is calculated by dividing the total cost of procuring all ancillary services at hour h by the total

amount of load at hour h.

2.3.4 Market Operator Model

Every day, upon receiving demand bids and supply offers, MO performs MPM and clears

day-ahead energy and AS market simultaneously. The Local Market Power Mitigation (LMPM)

is intended to limit the exercise of local market power by generation owners in load pockets.

The basic idea is to identify which generators are dispatched up to relieve congestion on non-

competitive paths (e.g. interfaces to load pockets). Generators that have been identified will

be subject to mitigation since they have the potential to exercise local market power. If those
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generation units’ supply offer is higher than default proxy bids, then energy offers will be

reduced to the default level. Specifically, the MPM process includes three steps. In the first

step, MO runs the market clearing software and clears the market with only competitive net-

work constraints. In CAISO, Path 15, Path 26, Inter-ties, and interfaces to certain generation

pockets are pre-defined as competitive network constraints. The first step is called competitive

constraint run (CCR). In the second step, MO clears the market with all constraints enforced.

This step is called all constraint run (ACR). In the third step, the CCR market clearing result

is compared with that of the ACR. If a generation unit is incremented between CCR and

ACR, the unit will be mitigated per the MPM process. In other words, mitigation applies to

the units that are dispatched up by the ACR compared to the CCR. If generation unit’s offer

subject to mitigation is higher than cost based default proxy bids (modeled as marginal cost +

10% in this study), then energy offers are reduced to the level of proxy bids. Those mitigated

bids serve as inputs to the actual day-ahead market clearing. In reality, a method to calculate

the default proxy bids is based on the unit’s variable cost. Under this variable cost option, the

default bids will be calculated based on the incremental heat rate curve (for gas fueled units)

multiplied by the gas price index or incremental cost rate curve (for non-gas fueled units), plus

an operations and maintenance adder [57]. This quantity multiplied by 110% will be used as

the default proxy bid.

The market operator runs a market clearing software to determine the hourly dispatch

schedules and LMPs of energy and AS. The market clearing software clears the bid-in supply

with bid-in demand and procures 100% of AS requirement with minimum cost. The objective

is to minimize the 24-hour total purchasing cost, which is formulated as:

min
24∑
h=1

{
∑
i∈I

cBi [ai + 2 · bi · P
G
ih] + Cres

i P res
ih + Creg,up

i P reg,up
ih + Creg,down

i P reg,down
ih } (2.5)



www.manaraa.com

19

s.t.

Pk − Pgk + Pdk = 0, k = 1, ...Nb (2.6)

|
Nb∑
k=1

GSFl−k · Pk| ≤ F l
max, l = 1, ...Nl (2.7)

PG
ih + P res

ih + P reg,up
ih ≤ Pmax

i , i ∈ I, ∀h (2.8)

PG
ih − P reg,down

ih ≥ Pmin
i , i ∈ I, ∀h (2.9)

0 ≤ (
P reg,up
ih

Rreg
i

+
P res
ih

Rres
i

) ≤ τ, i ∈ I, ∀h (2.10)

P reg,down
ih ≤ Rreg

i τ, i ∈ I, ∀h (2.11)

I∑
i=1

P reg,up
ih ≥ Rgreq,uh ∀h (2.12)

I∑
i=1

P reg,down
ih ≥ Rgreq,dh ∀h (2.13)

I∑
i=1

(P res
ih + P reg,up

ih ) ≥ Rsreqh +Rgreq,uh , ∀h (2.14)

PG
ih − PG

ih−1 ≤ Roper
i 60, i ∈ I, ∀h (2.15)

PG
ih−1 − PG

ih ≤ Roper
i 60, i ∈ I, ∀h (2.16)

The optimization problem of (2.5) is subject to real power balance constraints at each

bus (2.6), thermal limit constraints for each line (2.7), upper and lower generation capacity

constraints (2.8 - 2.9), and ramp rate constraints (2.10 - 2.11). There are also system wide

reliability requirements constraints (2.12 - 2.14), and power schedule constraints between hours

(2.15 - 2.16). In the case that a generation unit has reserved capacity for both regulation

up and spinning reserve AS, it has to be able to deliver both within 10 minutes. That is

why there is a combined constraint on both regulation up and spinning reserve AS in (2.10).

In procuring upward AS, the MO could substitute a higher quality AS type to meet the

requirement of a lower quality AS type if it is economically desirable to do so in the optimization

process. Regulation up AS is considered to have a higher quality than spinning reserve AS.

Therefore, there is an individual constraint on minimum amount of regulation up AS (2.12),

and a combined constraint on minimum amount of both regulation up and spinning reserve AS
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(2.14). The optimization problem is solved by CPLEX which is capable of handling large-scale

power systems problems. A CPLEX Java interface is implemented in this project to facilitate

the sharing of data between the programs.

2.4 Proposed Multi-agent Approach

2.4.1 Software Implementation of Multi-Agent System

When using an agent-based approach to solve a problem, a number of domain independent

issues must be addressed, such as how to allow agents to communicate [58]. JADE, a widely-

used agent-oriented middleware, provides the domain independent infrastructure which allows

developers to focus on the construction of key logics. Since JADE is written in Java, it benefits

from a large set of programming abstractions which greatly facilitate the development of MAS.

JADE fully complies with the FIPA specifications which are maintained by the standards

organization for agents and MAS. Based on the above considerations, JADE is chosen to be

the middleware on which the proposed MAS was implemented.

Figure 2.1 Structure of the multi-agent platform for electricity DAM

The structure of the multi-agent platform is depicted in Fig 2.1. JADE provides two utility

agents: the agent management system (AMS) and directory facilitator (DF) and an inter-agent

messaging system through which the agents communicate with each other. The AMS allocates

agent identifiers (AIDs) to each agent that registered with it, and provides a ”white page”
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service, where an agent can ask for the address of another. The DF provides a ”yellow page”

service, where agents register the services they provide, and an agent can ask for all agents to

provide a particular service.

Figure 2.2 Message flowing sequence in the multi-agent platform for elec-

tricity DAM

MO, GenCo agents and LSEs are developed fully in Java in this research. Fig 2.2 demon-

strates the message flowing sequence in the multi-agent platform to help explain the daily

sequence of tasks of MO, GenCo agents and LSEs. A GenCo agent’s daily sequence of tasks

is implemented as follows: collecting forecasted zonal load data posted by MO, submitting

supply offers to MO, collecting market settlement information posted by MO and adjusting

its bidding strategy based on the Q-learning algorithm. MO starts the day by collecting fore-

casted load data from LSEs, and posting the MO forecasted zonal load data. Upon receiving

the supply offers and demand bids, it performs MPM followed by market clearing. Afterwards,

it posts the market clearing information and uses an AS evaluation tool to test the system

frequency performance under hypothesized disturbances. The sequence of actions taken by

the LSEs is: report forecasted load data to MO, submit demand bid to MO, and collect the
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market settlement information from MO.

2.4.2 Learning Behavior of Agents Who Own Generation

The learning behavior of agents with generation units is modeled by Q-Learning. Q-

Learning, developed by Watkins [59], is a form of anticipatory reinforcement learning that

allows agents to learn how to act in a controlled Markovian domain. A controlled Markovian

domain implies that the environment is Markovian in the sense that the state transition prob-

ability from any state x to another state y only depends on x, y and the action a taken by the

agent, and not on the historical information. It works by successively updating estimates for

the Q-values of state-action pairs. The Q-value Q(x, a) is the expected discounted reward for

taking action a at state x and following an optimal decision rule thereafter. The estimates of

Q-values will be updated based on the reward received immediately after an action has been

taken at each time step. As time moves on, series of Q-value estimates will be formed. If the

series of estimates of Q-values converge to the correct Q-values, the optimal action to take in

any state is the one with the highest Q-value.

The Q-learning agent moves around a discrete finite world, choosing one action from its

finite action domain at every time step. In the nth step the agent observes the current system

state xn, selects an action an, receives an immediate payoff rn, and observes the next system

state yn. The agent then updates its Q-value estimates using a learning parameter αn and a

discount factor γ [59] as follows:

If x = xn and a = an,

Qn(x, a) = (1− αn)Qn−1(x, a) + αn[rn + γVn−1(yn)] (2.17)

Otherwise,

Qn(x, a) = Qn−1(x, a) (2.18)

where

Vn−1(y) ≡ max
b

{Qn−1(y, b)} (2.19)
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The way Q-Learning is implemented for an agent with generation unit(s) is as follows. A

step in the electricity DAM environment means a trading day. The agent views the DAM as a

complex system with different states. The perceived system state by an agent with generation

unit(s) on day D is defined as a vector with two elements which are variables related to the

zone where the agent’s unit is located. The first element is predicted day D+1’s daily average

zonal load level. The second element is the average LMP level of the most recent day that

has a similar average load level as day D+1. Each zone’s zonal daily average load is divided

into ML levels. For each zonal daily average load level, there are MP LMP levels. Hence the

cardinality of each agent’s state space is ML ×MP .

For an agent i, selecting an action means submitting a specific supply offer to the MO.

The supply offer of the agent is defined as a vector with two elements. The first element is the

bidding markup for the real power cBi that has MB possible values. The second element is the

bidding price for regulation up capacity creg,upi that has MR possible values. The action domain

of an agent is defined as the set of all possible actions that has a dimension of MB ×MR. To

limit the dimension of the action domain for agents, it is assumed that the bidding markups

for spinning reserve capacity and regulation up capacity are identical for the same unit. In

addition, the bidding markup for regulation down capacity is assumed to be zero.

The Q-learning algorithm does not specify how to choose an action at each time step. An

action a in state x is selected according to the Gibbs/Boltzmann distribution given in equation

(2.20) which depends on the Q-values.

PD(x, a) =
eQ(x,a)/Td∑

b∈ADi
eQ(x,b)/Td

(2.20)

In equation (2.20), ADi is the action domain of the agent, and Td is a “temperature”

parameter that models a decay over time according to the formula given in Table 2.1. In this

paper the Gibbs/Boltzmann distribution is chosen because, by setting proper parameters, it

ensures a sufficient exploration while still favoring actions with higher Q-value estimates.

The parameters that are used in the numerical study are set according to Table 2.1.

According to equation (2.20), when Td = +∞, every action has an equal probability of
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Table 2.1 Q-Learning parameters

γ α ω Td ML MP MB MR

0.7 1/Tω
(x,a) 0.77 const×N−6

d 4 3 5 3

being chosen. As Td gradually decreases over time, the action with a higher Q-value estimate

will have a higher probability to be chosen. By using the Gibbs/Boltzmann distribution to

select actions, the Q-learning agents are able to try a variety of actions when there was not

much historical bidding information to learn from. As time moves on, it also allows agents to

progressively favor those that appear to be the best actions. In this way, a trade-off between

exploration and exploitation is made.

Consider the beginning of each day D. An agent first makes a prediction of the system

state based on published load forecasting data and historical LMP data, which is represented

by x. It next chooses an action according to the process illustrated above. Having chosen an

action a, the agent will submit its supply offer and possibly demand bids to the MO. Once

the market is cleared, the agent will receive its reward, which is the profit for day D+1. Then

the agent uses this reward to update its Q-value estimates according to equations (2.17) to

(2.19). In the generator model, the Q-value estimates of the state-action pairs are updated by

the Q-learning algorithm.

In Table 2.1, Tω
(x,a) is the number of times action a has been taken in state x. Nd is the

number of days that have been simulated. ω should be chosen to obtain a suitable decay for

the learning parameter α. γ should be assigned a value that strikes an appropriate balance

between immediate reward and expected reward in the future. The choice of these parameter

values depends on the specific application. Since the application of this paper is in a dynamic

multi-agent learning environment and the simulation only runs for 184 days, the γ and ω

parameters are set so that the agents are able to extract enough information from the limited

historical bidding experience and learn at a relatively fast pace from the environment.
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2.5 Numerical Studies

2.5.1 Test System

A 225-bus WECC system developed in this project is used as the test market. The system

model, which is extended from a 179-bus model used in CAISO planning studies [60], represents

the essentials of the CAISO area. The system block diagram is shown in Fig. 2.3, where blocks

with a thick dashed outline represent constrained load and generation pockets, and thick

solid lines denote simplified network constraints, which are used as illustrations in CAISO’s

Congestion Management Reform Project, which predated market redesign and technology

upgrade (MRTU).

Figure 2.3 225-Bus WECC Model - Details of California

Inside the CAISO area, 23 aggregated thermal generators are modeled as GenCo agents that

bid strategically into the market. A total of 15 aggregated hydroelectric and other renewable

energy generators are modeled by time-varying outputs according to historical resource avail-

ability. Outside the CAISO area, resources represented as 22 generators produce net imports

into the CAISO area. The hourly time-varying data reflect a six-month period of operations

from May 1 2004 to Oct 31 2004, and include area loads for 11 local areas within the CAISO
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as well as net exports into a separate control area that is surrounded by the CAISO control

area. The system peak demand is 44209.2 MW. The installed capacities in different areas of

CAISO are listed in Table 2.2. Due to confidentiality, names of the areas are not shown in the

table.

Table 2.2 Installed capacity in different areas of CAISO

Area 1 2 3 4 5 6 7

Installed Capacity (MW) 4146 2644 196 1223 4010 7371 42

Area 8 9 10 11 12 13

Installed Capacity (MW) 395 17842 3577 255 903 4669

2.5.2 Evaluation of CAISO Market Power Mitigation Rules

To demonstrate the exercise of market power by Q-Learning agents and evaluate the effec-

tiveness of the MPM rules, the following three scenarios are simulated. The first scenario is a

competitive benchmark where every GenCo agent bids its marginal cost. The second scenario

is an unmitigated scenario where every GenCo agent bids strategically into the market accord-

ing to the Q-learning rules in the absence of MPM. The third scenario is a mitigated scenario

where every GenCo agent still bids strategically into the market, but is subject to the MPM

specified in subsection 2.3.4.

In every scenario, 15 simulation runs, each with a different random seed, are performed.

The average results are reported in Fig. 4-6.

To illustrate how Q-learning facilitates the exercise of market power and implicit collusion

of large GenCo agents, two pivotal GenCo agents from the SCE area are chosen for a case

study. GenCo agents 7 and 8 together have a capacity of 7685 MW, which comprises of 64%

of the area’s generation capacity.

For simulation run 1 of the unmitigated scenario and mitigated scenario, key information

from the Q-tables of GenCo agent 7 and 8 on August 10th are illustrated in Table 2.3.

As can be seen from Table 2.3, in the unmitigated scenario, both GenCo agents are in state
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Table 2.3 Key information from GenCo agent 7 and 8’s updating Q-table

Unmitigated Scenarios Mitigated Scenarios

state Action Index Bidding State Action Index with Bidding

with the Highest Markup for the Highest Markup for

Estimate Q-value Real Power Estimate Q-value Real Power

GenCo 7 12 11 12% 12 7 8%

GenCo 8 12 7 8% 12 4 4%

12. This state is encountered when the forecasted day D+1’s load level is high and most recent

similar load level day’s LMP is also high. In state 12, the highest Q-value estimate for GenCo

7 is given by action 11 which corresponds to a 12% bidding markup for real power. Similarly,

for GenCo 8, the highest Q-value estimate is given by action 7 which corresponds to an 8%

bidding markup for real power. The highest possible bidding markup for real power is set to

be 16% and the lowest is set to be 0%. From equation (2.20), an action that has a higher

Q-value estimate will have a higher probability to be selected. Q-learning method has helped

GenCo 7 and 8 to favor high markup actions when there is more potential to exercise their

market power. In addition, it is shown that those two Q-learning GenCo agents are capable of

implicitly colluding with each other by setting relatively high bidding markup together which

will successfully drive up the price. However, the highest possible bidding markup, 16%, is

not very attractive to the two pivotal GenCo agents. Indeed, although the LMPs are further

driven up, they will lose part of their previously profitable generation schedule to two other

relatively smaller generation companies in the area. This result extends the conclusion from

[61], in that the condition of having the same demand in every trading period is not necessary.

Even in a rapidly changing market environment, large generation owners who interact with

each other in similar scenarios easily learn to implicitly collude even without having to know

others’ historical bidding data.

In the mitigated scenario, both GenCo agents are also in state 12 on Aug 10th. This time,

the highest Q-value estimate for GenCo 7 is given by action 7 which correspond to an 8%

bidding markup for real power. The highest Q-value estimate for GenCo 8 is given by action



www.manaraa.com

28

4 which corresponds to a 4% bidding markup for real power. Comparing to the unmitigated

case, the favorite actions’ bidding markups are lower for both GenCo agents. This result

shows that the MPM helped to break the high markup collusion of the two pivotal suppliers

and successfully suppressed the Q-learning GenCo’s potential to exert market power.

Figure 2.4 Percent total market payment increase in the unmitigated and

mitigated scenarios compared to the competitive benchmark

As shown in Fig. 2.4, the total market payment in the unmitigated scenario is significantly

higher than that of the competitive benchmark. With the help of Q-Learning, the GenCo

agents are able to exploit the market together and gain an average of 9.7 percent increase in

total market payment comparing to the competitive benchmark. However, the total market

payment in the mitigated scenario is slightly higher than that of the competitive benchmark.

Facilitated by the MPM rules, the MO effectively reduced the percentage increase in total

market payment to only 2 percent. The lower average load level and less congestion leads

to a relatively low percentage increase of total market payment from August to the October

compared to June and July.

Fig. 2.5 demonstrates the percentage increase of total generation cost in the mitigated and

unmitigated scenario, compared to the competitive benchmark. The simulation result shows

that the total generation cost increase in the unmitigated scenario is about 1.5 percent higher
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Figure 2.5 Percent total generation cost increase in the unmitigated and

mitigated scenarios compared to the competitive benchmark

than that of the competitive benchmark. The strategic bidding of the GenCo agents’ results

in extramarginal capacity being cleared, and inframarginal capacity left not dispatched. The

reduction of market efficiency is caused by the market power collectively exercised by the GenCo

agents. The total generation cost increase in the mitigated scenario is only about 0.5 percent

higher than that of the competitive benchmark. This result shows that the MPM rules not only

suppressed the exercise of market power, but also enhanced market efficiency by bringing the

total generation cost closer to marginal cost revenues, compared to the unmitigated scenario’s

outcome.

The largest unit’s profit percentage increase in the unmitigated and mitigated scenarios,

compared to the competitive benchmark, is depicted in Fig. 2.6. The largest GenCo agent’s

profit increase, which is 47.9 percent above the competitive benchmark, is significantly higher

than the average increase of all other GenCo agents. This shows the Q-learning algorithm did

help the GenCo agent realize that the huge size of its unit does provide a higher potential to

exercise market power. In the mitigated scenario, the strategic bidding of generators is not

beneficial to the largest GenCo agent at all. In some situations, the strategic bidding behavior

will even lead to a lower profit compared to the competitive benchmark. The MPM rules being
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Figure 2.6 Percent largest unit’s profit increase in the unmitigated and

mitigated scenarios compared to the competitive benchmark

examined did reasonably well in discouraging the exercise of market power.

2.5.3 Effects of LSE Owning Generation Resources

It is common in agent modeling studies of electric markets to have separate agents for

GenCo agents vs. LSEs, and rare to have the same agents both buying and selling electricity.

However, in CAISO, a number of LSEs also own or control generation. The results of this

study demonstrate the importance of accounting for this type of LSE.

To examine the bidding behaviors of LSEs that own generation resources and their impacts

on suppressing the GenCos’ collective market power, it is assumed that five major LSEs have

their own generation units. Details of study inputs about LSEs’ service areas, their units’

capacity, and peak load is listed in Table 2.4. It is assumed that each LSE serves a peak load

of twice its unit’s capacity. To provide the desired test scenarios, this distribution of load

among LSEs is more uniform than the actual CAISO market, in which one LSE dominates

each of three transmission areas that also contain smaller municipal utilities and customers

served by competitive retail energy service providers.

The simulation is carried out in four scenarios categorized by whether mitigation rules exist

and whether some generation units are owned by LSEs. 15 simulation runs are performed in
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Table 2.4 LSEs detailed information

Area Peak Generation Unit Capacity Peak Load to Serve

Load (MW) Unit Owned (MW) (MW)

LSE A 16280.3 Generator 7 3718 7436

LSE B 16280.3 Generator 8 3967 7934

LSE C 7002.0 Generator 18 2628 5256

LSE D 6977.8 Generator 20 1478 2956

LSE E 6977.8 Generator 22 1314 2628

each scenario and the average results are reported below.

Figure 2.7 9-Day average bidding markup of generator 7 in unmitigated

and mitigated scenario when owned by LSE or GenCo agent

As shown in Fig. 2.7, generator 7, for example, quickly learned to bid at a lower markup

in the unmitigated scenario when it is owned by a LSE and the load level is high. The LSE

also learned the same strategy to reduce the cost of energy and AS in the mitigated scenario,

however, at a slower rate. In the unmitigated scenario where generator 7 is owned by a GenCo

agent, Q-Learning helped it learn to bid at a higher markup during high load days. In the

mitigated scenario, the GenCo agent learned a similar strategy except that the actual bidding

markup can not exceed 10% due to the existence of MPM rules. The bidding markup of other
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generators in Table 2.4 also exhibits similar patterns in the four simulation scenarios.

A conclusion from these simulation results is that if the generation capacity of a LSE is

smaller than the LSE’s total load, it will tend to bid at its generation unit’s true marginal

cost. However, if a generation company owns the same generator, it will tend to bid at a much

higher markup.

Figure 2.8 Total market payment and total generation cost percentage in-

crease in four scenarios compared to the competitive benchmark

The total market payment and total generation cost percentage increase from competitive

benchmark in the four scenarios are shown in Fig. 2.8. The simulation results show that both

MPM procedure and the LSEs’ ownership of generation units contribute to reductions in total

market payment and total generation cost. In the mitigated scenario, on average the total

profit of the group of generators that are not owned by LSEs is about 1.5% lower when some

LSEs own generation units compared to the case when LSEs do not own any generation units.

In the unmitigated scenarios, the reduction in profit is about 1.1% on average. Therefore, the

generation resources that are owned or managed by LSEs are useful for reduction of market

power during peak hours to the GenCo agents.
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2.6 Summary

This chapter presented a multi-agent simulation approach to the evaluation of electricity

market rules. It is found that the agent-based simulation approach empowered by Q-Learning

agents is able to capture the dynamic interaction between strategic bidding market participants.

The simulation result in the unmitigated scenarios shows that, even in a rapidly changing mar-

ket environment, major generation owners who interact with each other in similar scenarios

easily learn to implicitly collude even without having to know others’ historical bidding data.

This is achieved by anticipating each other’s impact on market prices. The simulation results

in a mitigated scenario show that the LMPM rules proposed by CAISO perform reasonably

well against Q-Learning agents and enhance the market efficiency. It is also shown that when

LSEs with generation resources are net buyers in the market, they pose effectively countervail-

ing market power against the GenCo agents. A drawback of the Q-Learning model for GenCo

agents is that it may suffer from the curse of dimensionality if there are too many decision vari-

ables. This weakness can be overcome by designing a learning algorithm for electricity market

participants that combines the strength of both Q-Learning and Artificial Neural Networks.

Further research is needed on the development of the proposed multi-agent platform to

enable the negotiation between GenCo agents and LSEs on bilateral contracts and study the

effects of forward contracts on DAM. In addition, it is desirable to incorporate marketers into

the model who trade energy but who do not own generation or serve load, and to examine the

impacts of virtual bidding on electricity markets.
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CHAPTER 3. FINANCIAL RISK MANAGEMENT IN WHOLESALE

POWER MARKETS

3.1 Nomenclature

Bus i Location of GenCo and LSE in a financial bilateral contract negotiation.

PG GenCo’s fixed hourly output (MW) for its power plant.

AG GenCo’s risk-aversion factor.

AL LSE’s risk-aversion factor.

KG Price bias affecting probability measure QG.

KL Price bias affecting probability measure QL.

EP Expected value calculated using true probability measure P .

EG Expected value calculated by GenCo using biased probability measure

QG.

EL Expected value calculated by LSE using biased probability measure QL.

α Confidence level for GenCo and LSE.

CV aRP
α Conditional value-at-risk calculated using true probability measure P .

CV aRG
α Conditional value-at-risk calculated by GenCo using biased probability

measure QG.

CV aRL
α Conditional value-at-risk calculated by LSE using biased probability

measure QL.

T Contract period (hours).

M Contract amount per hour (MW).

MR Lower bound for negotiated contract amount.

MU Upper bound for negotiated contract amount.
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S Contract strike price ($/MWh).

SR Lower bound for negotiated strike price.

SU Upper bound for negotiated strike price.

uG GenCo’s return-risk utility function.

uL LSE’s return-risk utility function.

πG GenCo net earnings.

πL LSE net earnings.

π0
G GenCo net earnings if no contract is signed.

π0
L LSE net earnings if no contract is signed.

λΣ Sum of LMP realizations at bus i during contract period.

3.2 Financial Risk Management Basics

3.2.1 Definition of Risk

The concept of risk does not have a universally accepted definition. Economists, statis-

ticians, physicists, philosophers, psychologists, decision theorists, and insurance theorists all

interpret risk in their own ways. The concept of risk not only varies by fields of application

but also by situation.

Nevertheless, most risk definitions share two common elements. The first element is the

possibility of an undesirable outcome that deviates from what is expected. The second element

is a basic uncertainty regarding the occurrence of this undesirable outcome. If this uncertainty

can be quantified in terms of probability assessments, then the situation is said to be one of

calculable risk . If, furthermore, these probability assessments are interpreted as being objec-

tively true assessments (i.e., independent of any person’s beliefs or information state), the risk

is said to be objective; otherwise it is said to be subjective.

Researchers focusing on risk management in wholesale power markets typically do not

provide a clear definition of “risk.” An exception is Liu and Wu [50], who define risk to be

“the hazard to which a market participant is exposed because of uncertainty.” This definition

clearly reflects the two previously mentioned common elements. However, it does not include
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the idea of anticipation or expectation as a benchmark.

In the following section we consider the general characteristics of a typical financial risk-

management process, where financial risk is defined to be “the possibility that financial out-

comes for an investor deviate adversely from what he expects.” In the remaining sections we

focus in greater detail on the specific types of financial risk faced by a generation company

(GenCo) operating within a WPM. In all cases we assume that financial risk is calculable in

terms of probabilities, and that these probability assessments represent the subjective assess-

ments of the risk manager.

3.2.2 Financial Risk Management as a Four-Stage Process

Consider a decision maker charged with managing financial risk for a portfolio of assets

owned by an investor. Typically this risk-management process involves four stages.

In the first stage the risk factors representing the principal sources of financial risk are

identified and modeled. In the second stage the financial risk arising from these multiple risk

factors is mapped into a scalar loss function. In the third stage this loss function is used to

derive one or more financial risk measures for gauging the financial riskiness of the portfolio as

a whole. Finally, in the fourth stage these comprehensive financial risk measures, possibly in

combination with appropriate supplemental tools (e.g., stress testing), are used to diversity the

asset portfolio to appropriately protect against financial risk in accordance with the preferences

and needs of the investor.

These four stages are explained more carefully below.

Stage 1: Identification and Modeling of Financial Risk Factors

The first stage in a typical risk-management process is to identify the underlying risk factors

and then build a sensible model for them. A simple example is given here to illustrate this

stage.

Consider a risk manager attempting to manage a portfolio of assets for a profit-maximizing

GenCo facing two sources of risk: a variable electric energy demand level D, and a variable

fuel price level F . Suppose for simplicity that D and F can only take on two values, High
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(denoted by 1) or Low (denoted by 0). The sample space Ω consisting of all possible outcome

pairs (Di, Fj) for D and F then takes the form Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}. Define F to

be the collection of all subsets of Ω, including the empty set. The two risk factors D and F

can then be modeled by defining an appropriate joint probability measure P on F .

Additional discussion of this stage is provided in Section 3.3.1.

Stage 2: Derivation of a Loss Function

The second risk-management stage typically involves the derivation of a real-valued loss

function that measures the relative undesirability of different possible risk-factor configurations

in accordance with the preferences of the portfolio investor. Continuing with the example

presented in Stage 1, the risk manager would assign a real-valued loss L(ω) to each possible

element ω of Ω. For example, if high fuel prices are the GenCo’s main concern, the risk manager

might assign losses as follows: L(0, 1) > L(1, 1) > L(0, 0) > L(1, 0).

Stage 3: Risk Measure Selection

The third risk-management stage typically involves the choice of an appropriate risk mea-

sure for characterizing overall portfolio risk for the particular situation at hand. This risk-

measure selection process could involve comparative consideration of several candidate risk

measures, such as return-rate variance, Value-at-Risk and Conditional Value-at-Risk. The def-

initions and derivations of these commonly used risk measures are discussed in Section 3.3.2.

Stage 4: Portfolio Optimization

The last stage in a typical financial risk-management process is portfolio optimization,

i.e., the determination of an optimal portfolio augmentation and rebalancing to achieve the

type of risk-return characteristics appropriate for the investor. This portfolio optimization

problem will take on different forms and require different solution techniques depending on

the particular risk measure(s) and supplemental risk-management tools selected by the risk

manager.
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3.3 Risk-Management Tools and Methods

This section provides additional details regarding the tools and methods used to implement

the four-stage risk management process outlined in Section 3.2.2.

3.3.1 Tools for Modeling Risk Factors

In the financial industry, three methods are commonly used to model risk factors in any

given time period. These methods are the “analytical variance-covariance method,” “historical

simulation,” and “Monte Carlo analysis” [62].

The analytical variance-covariance approach, also called the parametric approach, assumes

that changes in risk factors follow a multivariate normal distribution. In practice, the uncon-

ditional or conditional mean vector and covariance matrix of the assumed multivariate normal

distribution are estimated based on historical data for risk-factor changes. The main advan-

tages of this method are the simplicity of the analytical solution and its speed of calculation.

The main drawback is that the normality assumption can be problematic.

In the historical simulation approach, data are collected on the historical frequencies of

risk-factor configurations, and the resulting histogram is then used to estimate the distribu-

tion of future risk-factor configurations. Compared to the variance-covariance approach, the

historical simulation approach is very intuitive and easy to implement. However, if the histor-

ical frequencies vary over time, the resulting estimate for the distribution of future risk-factor

configurations can be very misleading.

The Monte Carlo approach involves the construction and calibration of an explicit para-

metric model for a set of risk factors based on historical data, and the subsequent use of this

model to predict future risk-factor configurations. Although this approach has the potential

to provide a much greater range of outcomes than historical simulation, it is computationally

intensive and hence time-consuming. Moreover, constructing a reasonable multivariate time

series model for a specific group of risk factors can be a daunting task in practice.
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3.3.2 Construction of Risk Measures

In theory, the probability density function of the loss function for a portfolio of assets

provides complete information about its risk. However, portfolio managers have found these

probability density functions too cumbersome and complex for practical applications. Instead,

they have preferred to construct simpler measures of portfolio risk that can be reduced to the

reporting of a single number. Although single-number measures clearly lose a great deal of in-

formation through aggregation, the issue is whether they adequately serve the risk-management

purposes of portfolio managers [63]. Three such single-number measures are briefly reviewed

below.

In traditional finance, following the work of Markowitz [64], the measurement of risk for

a portfolio of assets was primarily associated with the variance of the portfolio’s return rate.

Although variance is a well-understood concept and is easy to use analytically, it has some

major drawbacks [65]. The most important drawback is that variance does not distinguish

between positive and negative deviations from the mean. Consequently it is not conceptually

compatible with definitions of risk that focus solely on negative (unfavorable) deviations.

Beginning in the 1990s, alternative measures of portfolio risk have increasingly been adopted

in financial practice. As discussed at length in [66]-[72], two of the best-known measures are

“VaR” and “CVaR.”

The Value-at-Risk (VaR) measure is used when a portfolio manager is interested in making

the following type of statement: It is α percent certain that the portfolio loss will not be more

than VaR dollars in the next N days. More precisely, for any given confidence level α, the

VaR of a portfolio is given by the smallest number l such that the probability that the loss L

exceeds l is no greater than (1-α).

To put this definition in more rigorous mathematical form, consider a probability space

(Ω,F , P ) where Ω is a space of points called the sample space, F is a sigma-field of subsets of

Ω, and P is a probability measure on F . Singleton subsets {ω} of Ω, assumed to be elements

of F , are called elementary events. Define q = (x1, x2, ...xn) to be a given portfolio, where

xn denotes the amount of money invested in the nth asset. Let Lq denote the loss function
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of portfolio q, where Lq maps Ω into the real line <. Define ALq(l) ≡ {ω ∈ Ω : Lq(ω) > l},

and assume ALq(l) ∈ F for each l. The Value at Risk (VaR) for portfolio q at confidence level

α ∈ [0, 1] is then defined to be

V aRα(Lq) = inf{l ∈ < : P (ALq(l)) ≤ 1− α}. (3.1)

Since its inception, VaR has been widely used by corporate treasurers and fund managers

as well as by financial institutions. It has also been incorporated into the Basel II capital-

adequacy framework, an agreement among regulators on how to calculate the minimum reg-

ulatory capital requirements for banks. In spite of its popularity, however, VaR suffers from

several theoretical deficiencies. First, as a simple quantile of the loss distribution, it does not

provide any information about the severity of the losses when the loss exceeds the quantile

level. This problem is illustrated in Fig. 3.1. Although the two depicted portfolios have the

same risk level as measured by VaRα(Lq), the portfolio on the right is clearly riskier due to its

larger potential losses.

Figure 3.1 Illustration of a major drawback of VaR as a risk measure:

VaR assigns the same risk to each depicted probability density

function for loss

Another perceived problem with the VaR method is “non-subadditivity.” Roughly, non-

subadditivity contradicts the general principle that diversification should reduce overall port-

folio risk. Furthermore, VaR is non-convex with respect to the portfolio positions. Hence,

in practice, it is very difficult to solve portfolio optimization problems with VaR constraints

because they tend to induce the existence of multiple local minima.
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Having recognized the drawbacks of VaR, researchers have worked to develop an alternative

risk measure, Conditional Value-at-Risk (CVaR), with better properties than VaR. CVaR

extends VaR by considering the expected loss for a portfolio q conditional on this loss being

at least as great as VaRα(Lq), for any given confidence level α ∈ [0, 1]. More precisely, for any

α ∈ [0, 1], the CVaR of a given portfolio q with loss function Lq is defined as:

CV aRα(Lq) ≡ E(Lq | {ω ∈ Ω : Lq(ω) ≥ V aRα(Lq)}) . (3.2)

Equivalently, CVaR can be written as:

CV aRα(Lq) =
1

1− α

∫
ĀLq (V aRα(Lq))

Lq(ω)dP (ω) , (3.3)

where

ĀLq(l) ≡ {ω ∈ Ω : Lq(ω) ≥ l} . (3.4)

To see the distinction between VaR and CVaR more clearly, refer again to Fig. 3.1. For the

given confidence level α, the CVaR measure assigns heavier risk to the right-hand distribution

because the expected loss over the loss range l ≥ VaRα(Lq) is greater for this distribution. In

contrast, VaR assigns the same risk value VaRα(Lq) to each depicted distribution.

As established in [69], CVaR has four properties required for a coherent risk measure:

subadditivity, positive homogeneity, monotonicity and translation invariance. Moreover, in

contrast to VaR, CVaR is convex with respect to portfolio positions, a major practical advan-

tage of CVaR over VaR in applications.

3.3.3 Supplemental Tools: Stress Testing

To protect against the loss of information inherent in the use of single-number risk measures,

portfolio optimization techniques are often supplemented with additional risk-management

tools. One commonly-used supplementary tool is stress testing . Applied to portfolio analysis,

stress testing examines how robust a portfolio’s return rate is to the occurrence of extreme

events falling outside normal market conditions.

As discussed at greater length in [70], the rationale for using stress testing is that risk

measures derived from historical data might not adequately reflect possible future risks. For
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example, a portfolio manager might be concerned about the occurrence of a shock that he

believes is more likely to occur in the future than the historical data suggest, or about shocks

that he believes would substantially alter the historically observed correlation patterns among

asset returns upon which his current risk-factor model is based.

Stress testing proceeds by examining responses to variously specified extreme-event scenar-

ios; it does not address how likely it is that these scenarios will occur. If a portfolio manager is

able to assign both probability and loss assessments to extreme-event scenarios, and derive the

resulting loss distribution, he can then apply any of the previously discussed single-number

risk measures. Given the meaning of “extreme events,” however, it is unlikely that a port-

folio manager could make probability and loss assessments with confidence. The separate

scenario-conditioned results of stress testing can provide important cautionary information

about portfolio vulnerabilities even when these assessments cannot be comfortably made.

3.4 Financial Bilateral Contract Negotiation: Problem Description

Costly lessons learned from the California energy crisis in 2000-01 were that overreliance

on spot markets can lead to extremely volatile prices as well as a market design vulnerable to

gaming. The bilateral contracts for longer-term trades that were disallowed by the California

regulators could have reduced spot price volatility, discouraged gaming behaviors by power

traders, and provided a much-needed risk-hedging instrument for the three largest investor-

owned utilities.

Today, bilateral contracting either through negotiation (forward trading) or through orga-

nized public exchanges (futures trading) is a critical feature of most countries’ wholesale electric

power market designs. This critical feature helps to ensure competitive and transparent prices

and to countervail the exercise of market power.

In fact, bilateral contracting is the most frequent and preferred form of trade arrangement

in many electricity markets. Examples include the continental European electricity market,

the Texas (ERCOT) wholesale power market, the Nordic electricity market, and the Japanese

electric power exchange [73]. Traders in these markets routinely hedge their price risks by
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signing bilateral contracts. A common example of such a contract is a Contract-For-Difference

(CFD) that specifies a strike price ($/MWh) at which a particular MW amount is to be

exchanged at a particular reference location during a particular contract period. If the actual

price at the reference location differs from the strike price, the advantaged party is required to

“make whole” the disadvantaged party by paying the difference [51, Section V.A].

Given the prominent role played by negotiated bilateral contracts in power markets, a

crucial question is how the parties to such contracts successfully negotiate the terms of their

contracts. The negotiation process can be extremely complicated, involving considerations of

both risk management and strategic gaming.

In particular, a participant in a bilateral contract negotiation will typically be concerned not

only with expected net benefit but also with risk , i.e., the possibility of adverse deviations from

expected net benefit. Consequently, the participant will presumably try to negotiate a contract

that achieves a satisfactory trade-off between expected net benefit and risk in accordance with

its risk preferences.

In addition, such a participant will typically also be concerned with reactive and anticipa-

tory strategic gaming. If the other party offered that, how should I respond; and if I offer this,

what will the other party do? From a game theoretic perspective, each party to a negotiation

must always keep in mind that a strategy of trying to unilaterally improve its own return at

the expense of the other party will typically be self-defeating [74]. Although a party could

stubbornly insist on pushing the point of agreement in its favor, this effort will be in vain if

the other party then decides to walk away. A typical bilateral contract negotiation process

involves elements of both cooperation and competition [75].

Moreover, these considerations of risk and strategic gaming can arise across several distinct

markets at the same time. For example, many generation companies in the ISO New England

simultaneously participate in an exchange market for bilateral contracts, a day-ahead energy

market, a financial transmission rights market, and a capacity market. The contractual position

of a generation company in any one of these markets can strongly affect its behavior in the

other three markets, as well as its bargaining position in future contractual negotiations. A
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classic example is given by Stoft [76]: a generation company that has bilaterally contracted

to sell 90% of its power output has only a 10% incentive to raise the price it receives in the

day-ahead energy market in comparison to an identically structured generation company with

no bilateral contracts.

This study analyzes a negotiation process between a generation company (GenCo) and a

load-serving entity (LSE) for a financial1 bilateral contract, taking into account considerations

of risk management, strategic gaming, and multi-market interactions. Nash bargaining theory

is used to model a Pareto-efficient settlement point for this negotiation process. The model

predicts negotiation results under varied conditions and identifies circumstances in which the

two parties might fail to reach an agreement. In particular, both analytical and computational

studies are used to gain insight regarding how negotiated outcomes depend on the relative risk

preferences of the GenCo and the LSE, and on the degree to which their price estimates are

biased. These results should provide useful guidance to GenCos and LSEs engaged in actual

bilateral contract negotiation processes.

3.5 Analytical Formulation of a Financial Bilateral Contract Negotiation

Problem

This section develops a simple but informative analytical modeling of a GenCo G and an

LSE L attempting to negotiate the terms of a financial bilateral contract in order to hedge

price risk in a day-ahead energy market with congestion managed by locational marginal

pricing. Both G and L are located at the same bus, so the price risk they face arises from their

uncertainty regarding future outcomes for the LMP at their common bus.

As clarified below, each participant G and L is assumed to express their preferences over

possible terms for their negotiated contract by means of a return-risk utility function. Also,

each participant is assumed to know the utility function of the other participant. Thus, ex-

1In U.S. ISO-managed electric power markets such as the Midwest ISO [77], a bilateral transaction that
involves the physical transfer of energy through a transmission provider’s region is referred to as a physical

bilateral transaction. A bilateral transaction that only transfers financial responsibility within and across a
transmission provider’s region is referred to as a financial bilateral transaction. A financial bilateral contract
between a GenCo and an LSE provides more flexibility to both parties since the contract terms are not subject
to the GenCo’s physical constraints.
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pressed in standard game theory terminology, the negotiation process between G and L is a

two-player cooperative game with a commonly known payoff matrix.

The day-ahead energy market in which G and L participate entails core features of actual

restructured day-ahead energy markets in the U.S. Specifically, during each operating day

D a market operator runs DC optimal power flow (DC-OPF) software to determine hourly

dispatch schedules and LMPs for the day-ahead energy market on day D+1. For simplicity,

it is assumed that each GenCo reports its true cost and capacity conditions to the ISO, i.e.,

GenCos do not formulate strategic supply offers in an attempt to exercise market power. The

DC-OPF software is implemented as in Yu et al. [52] except that, for simplicity, the ancillary

services aspects are omitted.

3.5.1 The GenCo’s Perspective

For concreteness, GenCo G is assumed to own a single nuclear power plant located at bus

i. For safety reasons, the production of the nuclear power plant is set at a fixed level PG (MW)

per hour at which its outage risk is effectively zero. Since the nuclear power plant’s production

level is fixed, G is not allowed to bid strategically in the day-ahead energy market.2

For simplicity, it is assumed that G has a long-term supply contract for uranium fuel (solid

ceramic fuel pellets), implying its fuel costs per MW of production are essentially fixed. The

total variable production cost ($/h) for G’s nuclear power plant in any hour h is given by

TV C(PG) = aPG + bP 2
G (3.5)

Under the above assumptions, the only risk facing G is price risk induced by the variability

of the LMP outcomes at its own bus i. In an attempt to reduce its price risk, suppose G enters

into a financial bilateral contract negotiation with an LSE L also located at bus i.

In particular, suppose G and L attempt to negotiate the hourly contract amount M (MW)

and strike price S ($/MWh) for a contract-for-difference (CFD) over a specified contract period

from hour 1 to hour T. Let LMPh
i denotes the LMP realized at bus i for any hour h during

2The assumption of a nuclear power plant is simply for illustration purposes. All that is needed for the
analysis below is that the power plant has a fixed output.
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the contract period. Under the terms of this CFD, if LMPh
i differs from the strike price S,

then the advantaged party must compensate the disadvantaged party. For example, if S exeeds

LMPh
i , then the advantaged buyer L must pay to the disadvantaged seller G an amount [S -

LMPh
i ]·M; and conversely.

After signing a CFD with hourly contract amount M and strike price S, the combined net

earnings of G from its day-ahead energy market sales and its CFD, conditional on any given

realization of LMPh
i values over the CFD contract period from hour 1 to hour T, are given by

πG(M,S) =
T∑

h=1

[LMP h
i · PG − TV C(PG)]

+
T∑

h=1

[(S − LMP h
i ) ·M ] (3.6)

Let the net earnings attained by G from its day-ahead energy market sales be denoted by

π0
G ≡

T∑
h=1

[LMP h
i · PG − TV C(PG)] , (3.7)

and let

λΣ ≡
T∑

h=1

LMP h
i . (3.8)

Then G’s net earnings function (3.6) can equivalently be expressed as

πG(M,S) = π0
G + [T · S − λΣ] ·M (3.9)

Note that the time-value of money is not considered in G’s net earnings function (3.6). The

introduction of a discount rate could easily be incorporated to obtain a standard present-value

representation for intertemporal net earnings without changing the analysis below. However,

for expositional simplicity, it is assumed that the contract period T for the CFD under study

here is of such short duration that the discount rate across all hours of T can be set to zero.

GenCo G is a profit-seeking company that negotiates contract terms in an attempt to attain

a favorable tradeoff between expected net earnings and financial risk exposure. To accomplish

this, it makes use of a return-risk utility function to measure its relative preferences over

return-risk combinations.
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The best-known example of a return-risk utility function is the mean-variance utility func-

tion traditionally used in finance to evaluate portfolios of financial assets (e.g., stock holdings).

For example, given a stock portfolio q with market value pt at time t, the “mean” of q at time t

is interpreted to be the expectation of q’s one-period return rate R(t, t+1) = [pt+1−pt]/pt and

the “variance” of q at time t is interpreted to be the variance of this return rate. Often mean-

variance utility functions are specified in a simple parameterized linear form: U(mean,variance)

= mean - A·variance.

Modern finance has moved away from the use of variance as a measure of financial risk for

two key reasons. First, the return rates for many financial instruments appear to have “thick-

tailed” pdfs, in the sense that the second moment (hence variance) does not exist. Second,

in financial contexts, upside deviations from expected returns are desirable; only downside

deviations satisfy the intuitive idea that “riskiness” should refer to the possibility of “adverse

consequences.”

Consequently, in place of variance, modern financial researchers now frequently measure the

financial risk of an asset portfolio in terms of “one-tail” measures such as value-at-risk (VaR)

and conditional-value-at-risk (CVaR). Basically, for any given confidence level α, the VaR of a

portfolio is given by the smallest number l such that the probability that the loss L in portfolio

value exceeds l is no greater than (1-α). In contrast, the CVaR of a portfolio is defined as

the expected loss L in portfolio value during a specified period, conditional on the event that

L is greater than or equal to VaR. Thus, CVaR informs a portfolio holder about expected

loss conditional on the occurrence of an unfavorable event rather than simply indicating the

probability of an unfavorable event. See Yu et al. [51] for a more detailed discussion of the

meaning of VaR and CVaR, and the conceptual and technical advantages of CVaR relative to

VaR.

In this study the return-risk utility function of GenCo G is assumed to have the following

parameterized linear form:

uG(E
G(πG),CV aRG

α (−πG))

= EG(πG)−AG · CV aRG
α (−πG) (3.10)
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In (3.10), EG(πG) denotes G’s expected net earnings, and CV aRG
α (−πG) denotes the CVaR

associated with G’s “loss function,” i.e., the negative of G’s net earnings function (3.6), condi-

tional on any given confidence level α. The parameter AG in (3.10) is G’s risk-aversion factor

that determines G’s preferred tradeoff between expected net earnings and risk exposure as

measured by CVaR.

3.5.2 The LSE’s Perspective

On each day D the LSE L submits a demand bid to purchase power at bus i from the

day-ahead energy market for day D+1 in order to service retail customer load at bus i on day

D+1. This demand bid consists of a 24-h load profile. The retail customers at bus i pay L a

regulated rate f ($/MWh) for electric power.

At the end of day D the LSE is charged the price LMPh
i ($/MWh) for its cleared demand

for hour h of day D+1, where LMPh
i is the LMP determined by the market operator for bus

i in hour h via DC-OPF. Any deviation between L’s cleared demands and its actual demands

for day D+1 are resolved in the real-time market for day D+1 using real-time market LMPs.

The risk faced by L on each day D thus arises both from its uncertainty regarding its actual

demand and from its uncertainty regarding the prices it will be charged for its cleared demand

and for deviations from its cleared demand. As detailed in Section 3.5.1, it is assumed that L

attempts to partially hedge its price risk at bus i by entering into a negotiation with GenCo G

at bus i for a CFD contract over a given contract period from hour 1 to hour T. The negotiable

terms of this CFD consist of a contract amount M (MW) and a strike price S ($/MWh).

Suppose L and G have signed a CFD for a contract amount M at a strike price S. Let

P h
Li denote L’s cleared day-ahead market demand at bus i for any hour h during the contract

period. Then the combined net earnings of L from its day-ahead energy market purchases and

its CFD, conditional on any given realization of LMPh
i values over the CFD contract period
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from hour 1 to hour T, are given by

πL(M,S) =
T∑

h=1

[P h
Li · (f − LMP h

i )]

+
T∑

h=1

[(LMP h
i − S) ·M ] (3.11)

As was done for G, let the net earnings of L from its day-ahead energy market purchases

be denoted by

π0
L ≡

T∑
h=1

[P h
Li · (f − LMP h

i )] (3.12)

Then, using (3.8), the net earnings function (3.11) for L can equivalently be expressed as

πL(M,S) = π0
L + [λΣ − T · S] ·M (3.13)

Finally, similar to G, it is assumed that L uses a return-risk utility function to represent its

preferences over combinations of expected net earnings and risk. In particular, it is assumed

L’s utility function takes the following parameterized linear form:

uL(E
L(πL),CV aRL

α(−πL))

= EL(πL)−AL · CV aRL
α(−πL) (3.14)

In (3.14), EL(πL) denotes L’s expected net earnings, and CV aRL
α(−πL) denotes the CVaR

associated with L’s “loss function,” i.e., the negative of its net earnings function (3.11), condi-

tional on any given confidence level α. The parameter AL in (3.14) is L’s risk-aversion factor

that determines L’s preferred tradeoff between expected net earnings and risk exposure as

measured by CVaR.

3.5.3 Effects of GenCo and LSE Price Estimation Bias on Expected Price and

Perceived Risk

This section examines how biases in the probability density functions (pdfs) used by GenCo

G and LSE L to represent their uncertainty about the LMP outcomes at their bus i affect their

price expectations and perceived risk exposure. These results will be used in Section 3.7 to
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determine how these biases affect the outcomes of the financial bilateral contract negotiation

process between G and L.

As seen in (3.9) and (3.13), the net earnings of G and L depend on prices only through the

LMP summation term λΣ. Consequently, in considering biased price estimates, it suffices to

consider biases in the pdfs used by G and L for λΣ.

Suppose the true uncertainty in λΣ over the contract period can be represented by a

probability measure P defined over a sigma-field F of measurable subsets of a sample space

Ω of elementary events, i.e., by the probability space (Ω,F , P ). Suppose, instead, that G and

L perceive this uncertainty to be described by probability spaces (Ω,F , QG) and (Ω,F , QL),

respectively, where QG and QL differ from P by constant additive bias terms KG and KL as

follows:

QG(λΣ +KG) = P (λΣ) (3.15)

QL(λΣ +KL) = P (λΣ) (3.16)

Let the corresponding pdfs for λΣ under the three different probability measures P , QG,

and QL be denoted by fP (λΣ), fQG
(λΣ), and fQL

(λΣ). These probability measures and corre-

sponding pdfs satisfy the following relationships:

dP (λΣ) = fP (λΣ)dλΣ (3.17)

dQG(λΣ) = fQG
(λΣ)dλΣ (3.18)

dQL(λΣ) = fQL
(λΣ)dλΣ (3.19)

It follows from these relationships that

fQG
(λΣ +KG) = fP (λΣ) (3.20)

fQL
(λΣ +KL) = fP (λΣ) (3.21)

Figure 3.2 illustrates relationships (3.20) and (3.21) for a particular configuration of biases.

Making use of the above relationships, the effects of the bias terms KG and KL on the

expectation and CVaR for λΣ can be determined. These effects are summarized in the following

theorem, whose proof is provided in Appendix A.
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Figure 3.2 Relationships among the true and biased probability density

functions for λΣ given biases KG > KL > 0

Theorem 1: Given any confidence level α ∈ (0, 1), the expectation and CVaRα measure for λΣ

under the true probability measure P and the biased probability measures QG and QL satisfy

the following relationships:

EG(λΣ) = EP (λΣ) +KG (3.22)

CV aRG
α (λΣ) = CV aRP

α (λΣ) +KG (3.23)

EL(λΣ) = EP (λΣ) +KL (3.24)

CV aRL
α(λΣ) = CV aRP

α (λΣ) +KL (3.25)

3.6 Nash Bargaining Theory Approach

Section 3.6.1 reviews Nash bargaining theory in general form. Nash bargaining theory is

then specialized in Section 3.6.2 to the financial bilateral contract negotiation problem set out

in Section 3.5.

3.6.1 Nash Bargaining Theory: General Formulation

Consider two utility-seeking players attempting to agree on a settlement point u = (u1, u2)

in a compact convex utility possibility set U ⊆ <2. If the two players fail to reach an agreement,

the default outcome is a threat point ζ = (ζ1, ζ2) satisfying ζ ∈ U and

U ∩ {x ∈ <2 : xj > ζj for j = 1 or j = 2} 6= ∅ (3.26)
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Let the set of all bargaining problems (U, ζ) satisfying the above assumptions be denoted by

D. For each (U, ζ) ∈ D, define the barter set as follows:

B(U, ζ) ≡ U ∩ {x ∈ <2 : x ≥ ζ} (3.27)

Nash [78] defined a bargaining solution to be any function f :D → <2 that assigns a unique

outcome f(U, ζ) ∈ B(U, ζ) for every bargaining problem (U, ζ) ∈ D. Nash proved that there

is a unique bargaining solution which satisfies the following four axioms (see [79]).

Axiom 1. Invariance Under Positive Linear Affine Transformations: If a bargaining prob-

lem (U, ζ) is transformed into a bargaining problem (U ′, ζ′) by taking u′j = αjuj + βj and ζ ′j

= αjζj + βj , where αj > 0, then fj(U
′, ζ′) = αjfj(U, ζ) + βj .

Axiom 2. Symmetry: If a bargaining problem (U, ζ) is symmetric, in the sense that ζ1 = ζ2

and (u1, u2) ∈ U if and only if (u2, u1) ∈ U , then f1(U, ζ) = f2(U, ζ). The symmetry axiom

basically says that, if the utility possibility set is symmetric, and the two participants have the

same threat point, then the two participants achieve the same utility outcomes.

Axiom 3. Independence of Irrelevant Alternatives: If (U, ζ) and (U ′, ζ) are bargaining

problems with U ⊂ U ′, and f(U ′, ζ) ∈ U , then f(U, ζ) = f(U ′, ζ). The independence of

irrelevant alternatives axioms states that the outcome of a bargaining game does not change

if the bargainers are given additional bargaining points that are not then selected.

Axiom 4. Pareto-Efficiency: If (U, ζ) is a bargaining problem with u, u′ ∈ U and u′ > u,

then f(U, ζ) 6= u. The Pareto-efficiency property requires that the bargaining solution not be

strictly Pareto-dominated by another possible bargaining point.

The four axioms make Nash bargaining solution a fair, efficient and hence desirable outcome

of general bargaining processes.

Specifically, for any given bargaining problem (U, ζ) ∈ D, Nash’s bargaining solution

f∗(U, ζ) ≡ (u∗1, u
∗

2) ∈ B(U, ζ) is determined as the unique solution to the following prob-

lem: maximize (u1 − ζ1)(u2 − ζ2) with respect to (u1, u2) ∈ U subject to u1 ≥ ζ1 and u2 ≥ ζ2.

Hereafter the function f∗ will be referred to as the Nash Bargaining Solution (NBS).

Note that Nash’s original bargaining theorem summarized above assumes utility possibility

sets that are non-empty, compact, and convex. As shown in [80], however, this theorem can
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readily be extended to the broader class of bargaining problems for which the barter sets are

non-empty, closed, and “corner concave” in the sense of having a concave northeast boundary.

Interestingly, as will be shown in Section 3.6.2, the barter sets for the particularly class of

bargaining problems analyzed in this study are always non-empty, compact (hence closed),

and convex (hence corner concave) even though the underlying utility possibility sets need not

be convex.

3.6.2 Application of Nash Bargaining Theory to the Bilateral Contract Negotia-

tion Problem for GenCo G and LSE L

Consider once again the financial bilateral contract problem set out in Section 3.5. GenCo

G and LSE L at a common bus i are engaged in a negotiation for a contract-for-difference

(CFD) at bus i.

Suppose G and L use Nash bargaining theory in an attempt to negotiate the contract

amount M and strike price S for this CFD. The threat point ζ for the negotiation is given by

the utility levels attained by G and L if no contract is signed:

ζ1 ≡ uG(E
G(π0

G), CV aRG
α (−π0

G)) (3.28)

ζ2 ≡ uL(E
L(π0

L), CV aRL
α(−π0

L)) (3.29)

Suppose, also, that the feasible negotiation ranges for M and S are nonempty closed inter-

vals: MR ≤ M ≤ MU , and SR ≤ S ≤ SU . In general, the lower bound MR for M could be

any nonnegative value. However, the setting MR = 0 that yields the largest utility possibility

set is used in the analysis below for better graphical visualization.

The utility possibility set U for G and L’s CFD bargaining problem is given by the set

of all possible utility outcomes (3.10) and (3.14) for G and L as M and S vary over their

feasible negotiation ranges. The barter set for this bargaining problem (U, ζ) then takes the

form B ≡ {(uG, uL) ∈ U : uG ≥ ζ1, uL ≥ ζ2}. Finally, the Nash bargaining solution for this
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bargaining problem is calculated as follows:

max
(uG,uL)∈U

(uG − ζ1)(uL − ζ2) (3.30)

s.t. uG ≥ ζ1 and uL ≥ ζ2

Notice that since the Nash bargaining solution satisfy Pareto-Efficiency Axiom, the solution

points are restricted to the north east corner of the barter set which is the right triangle’s longest

edge as shown in figure 3.3 and 3.5. Therefore, the optimization problem illustrated above is

reduced to a quadratic programming problem.

The following Theorem 2, proved in Appendix B, establishes that the barter set B for this

CFD bargaining problem is always convex even though the utility possibility set U can fail to

be convex. As shown in the proof of Theorem 2, the exact shape of the barter set B depends

on the relationships among the partial derivatives of CV aRL
α with respect to M , AG, AL, λΣ,

KL and KG.

Theorem 2: Suppose the previously given restrictions on the CFD bargaining problem for G and

L all hold. Suppose, also, that the lowest possible strike price SR is less than SR∗

as defined in

(3.31), and that the highest possible strike price SU is greater than SU∗

as defined in (3.32).

Then the Nash barter set B for the CFD bargaining problem for G and L is a non-empty,

compact, convex subset of <2. Specifically, the barter set B is a compact right triangle when

conditions (3.33) and (3.34) both hold (cf. fig. 3.3); the barter set B reduces to the no-contract

threat point when inequality (3.34) does not hold (cf. fig. 3.4); and the barter set B is a compact

right triangle when (3.33) does not hold but (3.34) holds (cf. fig. 3.5).

SR
∗

= min(
E(λΣ) +AGCV aR(λΣ) + (1 +AG)KG

T (1 +AG)
,

E(λΣ)−AGCV aR(−λΣ) + (1 +AG)KG

T (1 +AG)
,

E(λΣ) + (1 +AL)KL −ALCV aR(−λΣ)

T (1 +AL)
) (3.31)
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Figure 3.3 Type 1 utility possibility set U and barter set B for GenCo G

and LSE L. The barter set is a right triangle

SU
∗

= max(
E(λΣ) +AGCV aR(λΣ) + (1 +AG)KG

T (1 +AG)
,

E(λΣ)−AGCV aR(−λΣ) + (1 +AG)KG

T (1 +AG)
,

E(λΣ) + (1 +AL)KL +ALCV aR(λΣ)

T (1 +AL)
) (3.32)

dCV aRL
α(−πL(M,SL))

dM
|M=MU >

AG −AL

AL[1 +AG]
EP (λΣ)

−
AG[1 +AL]

AL[1 +AG]
CV aRP

α (λΣ) +
1

AL

KL −
1 +AL

AL

KG + TS (3.33)

dCV aRL
α(−πL(M,SL))

dM
|M=0 <

AG −AL

AL[1 +AG]
EP (λΣ)

+
AG[1 +AL]

AL[1 +AG]
CV aRP

α (−λΣ) +
1

AL

KL −
1 +AL

AL

KG + TS (3.34)

3.7 Computational Experiments

3.7.1 Five-Bus Test Case and Experimental Design

This section reports on computational CFD bargaining experiments conducted using a

modified version of the benchmark five-bus test case presented in [81]. As depicted in Fig 3.6,
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Figure 3.4 Type 2 utility possibility set U and barter set B for GenCo G

and LSE L. The barter set reduces to the non-contract threat

point

the key changes are the addition of a GenCo G6 at Bus 3 that owns and operates a nuclear

power plant at Bus 3, and a more detailed modeling of LSE 2 at Bus 3.

More precisely, G6 is assumed to have the characteristics of the profit-seeking risk-averse

GenCo G described in Section 3.5.1, and LSE 2 is assumed to have the characteristics of the

profit-seeking risk-averse LSE L described in Section 3.5.2. To hedge their price risk at Bus

3, G6 and LSE 2 enter into a negotiation process for a CFD. As in Section 3.6.2, this CFD

negotiation process is modeled as a Nash bargaining problem, and outcomes are obtained via

a Nash bargaining solution as in (3.30).

The two types of experiments reported below examine how the outcomes of this CFD

bargaining problem are affected by systematic variations in structural conditions. The first

set of experiments investigates the effects of absolute and relative changes in the risk-aversion

factors AG and AL for G6 and LSE 2, assuming zero price bias. The second set of experiments

investigates the effects of absolute and relative changes in the price bias factors KG and KL

affecting the estimates formed by G6 and LSE 2 for λΣ, the sum of LMPs at Bus 3 during

the CFD contract period, conditional on particular risk aversion settings. For simplicity, these

price bias factors are assumed to be proportional to λΣ.

As in Section 3.5.1, G6’s nuclear power plant is assumed to have a quadratic total variable
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Figure 3.5 Type 3 utility possibility set U and barter set B for GenCo G

and LSE L. The barter set is a right triangle

Figure 3.6 Five-bus test case used for computational experiments

cost (TVC) function given by (3.5). The parameters characterizing this TVC function are set

as follows: b = 0.005 and a = 10.0. G6’s fixed output PG is set at 300 MW/h. The regulated

retail resale rate f for LSE 2 is set at $25/MWh. Also, the confidence level α for all CVaR

evaluations for both GenCo G6 and LSE 2 is set at 0.95. All line capacities, reactances, and

cost and capacity data for GenCos G1 through G5 are set as in the benchmark five-bus test

case from [81].

The CFD contract period for G6 and LSE 2 is assumed to be one month, “June.” The

“true” daily average load during this month was generated via a truncated multivariate normal

distribution. To make the case study more realistic, the parameters for the mean vector and

covariance matrix for this distribution were estimated from MISO load data for June 2006

[82]. The daily average load and load autocorrelation function used for sample generation are
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Table 3.1 Daily average load for the five-bus test case during the contract

month (“June”)

June 1 June 2 June 3 June 4 June 5

337.01 MW 319.10 MW 285.94 MW 268.12 MW 318.61 MW

June 6 June 7 June 8 June 9 June 10

329.53 MW 335.84 MW 336.94 MW 316.81 MW 270.06 MW

June 11 June 12 June 13 June 14 June 15

250.76 MW 297.36 MW 310.81 MW 322.45 MW 338.52 MW

June 16 June 17 June 18 June 19 June 20

360.43 MW 341.99 MW 312.55 MW 351.49 MW 349.64 MW

June 21 June 22 June 23 June 24 June 25

363.59 MW 367.08 MW 336.56 MW 300.43 MW 285.71 MW

June 26 June 27 June 28 June 29 June 30

329.89 MW 335.36 MW 336.34 MW 337.69 MW 336.93 MW

provided in Tables 3.1 and 3.2. The variance of the daily average load was set at 834.5748

MW 2. The hourly load was approximated by multiplying the daily total load by an hourly

load weight factor equal to the load weight factor for the historical data.

Using the above modeling for hourly loads, 1000 sample paths were generated for hourly

DC-OPF dispatch and LMP solutions for the day-ahead energy market over the contract

month.3 To reduce the sample space and corresponding sample generation time and number

of runs necessary for Monte Carlo simulation, recourse was made to an efficient stratified

sampling technique, Latin Hypercube Sampling (LHS) [83].

Given each experimental treatment, i.e., each setting for (AG, AL,KG,KL), these 1000

sample paths were used to formulate the return-risk utility functions (3.10) and (3.14) for G6

and LSE 2 as functions of the contract amount M and strike price S. The feasible negotiation

ranges for M and S were set as follows:4 M ∈ [0, 600], and S ∈ [15, 25]. The unique Nash

bargaining outcomes for M and S were then determined.

3These sample paths are available upon request from N. Yu.
4As required by Theorem 2, it can be shown that the setting SR = 15 is smaller than SR∗

in (3.31) and the
setting SU = 25 is greater than SU∗

in (3.32) for each tested configuration for (AG, AL,KG,KL).
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Table 3.2 Autocorrelation function for daily average load for the five-bus

test case during the contract month (“June”)

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

1.00000 0.68366 0.22233 -0.09257 -0.16865 -0.04008

Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11

0.18943 0.36306 0.28063 0.12285 0.00094 -0.05240

Lag 12 Lag 13 Lag 14 Lag 15 Lag 16 Lag 17

-0.05279 -0.03001 -0.00707 0.00596 0.00903 0.00644

Lag 18 Lag 19 Lag 20 Lag 21 Lag 22 Lag 23

0.00251 -0.00028 -0.00137 -0.00125 -0.00065 -0.00011

Lag 24 Lag 25 Lag 26 Lag 27 Lag 28 Lag 29

0.00017 0.00022 0.00015 0.00005 -0.00001 -0.00004

3.7.2 Experimental Findings

3.7.2.1 Risk-Aversion Treatment

This section examines the effects of changes in the risk-aversion factors AG and AL assuming

zero price bias (KG = KL = 0).

Table 3.3 Effects of risk-aversion factors on the contract amount M and

strike price S determined through Nash bargaining

H
H

H
H
H
H

AG

AL 0.5 1 2

0.5
$19.84/MWh $19.93/MWh $20.02/MWh

300.0 MW 284.4 MW 271.0 MW

1
$19.74/MWh $19.81/MWh $19.88/MWh

300.0 MW 300.0 MW 291.8 MW

2
$19.64/MWh $19.71/MWh $19.77/MWh

300.0 MW 300.0 MW 300.0 MW

Table 3.3 reports the Nash bargaining outcomes for the contract amount M and strike price

S as AG and AL are systematically varied from 0.5 to 2.0. Moving from top to bottom in each

column of Table 3.3, the negotiated strike price S systematically decreases as G6’s risk-aversion

factor AG is increased, holding fixed the risk-aversion factor AL for LSE 2. Conversely, moving
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from left to right in each row, the negotiated strike price S systematically increases as LSE 2’s

risk-aversion factor AL is increased, holding fixed the risk-aversion factor AG for G6.

Figure 3.7 GenCo net earnings histogram given a fixed GenCo risk-aver-

sion factor AG = 1 and varying values for the LSE risk-aversion

factor AL

Figure 3.8 LSE net earnings histogram given a fixed GenCo risk-aversion

factor AG = 1 and varying values for the LSE risk-aversion

factor AL

In summary, all else equal, as each trader becomes more risk averse the negotiated strike

price moves in a direction that favors the other trader. Interestingly, the negotiated outcomes

for both M and S are seen to depend on the absolute levels as well as on the relative levels of

the risk-aversion factors AG and AL.

Figs.3.7 and 3.8 display the effects of changes in the risk-aversion factor AL for LSE 2
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on the post-contract net earnings histograms for G6 and LSE 2, respectively, assuming the

risk-aversion factor AG for G6 is fixed at 1.0. As LSE 2 becomes more risk averse, its net

earnings histogram shifts to the left, an unfavorable shift for LSE 2. On the other hand,

the net earnings histogram for G6 shifts to the right, a favorable shift for G6. These net

earnings findings provide additional support for the conclusion previously drawn from the

more aggregated findings reported in Table 3.3: namely, an increase in risk aversion for one

party to the CFD bargaining process, all else equal, results in a worse outcome for this party

and a more favorable outcome for the other party.

3.7.2.2 LMP Bias Treatment

Experiments were conducted to determine the effects of changes in the price bias factors

KG and KL for each risk-aversion treatment (AG, AL) in Table 3.3. Due to space limitations,

only the price bias results for AG = AL = 1 are reported below.5

Table 3.4 Effects of biases in LMP estimates on the contract amount M

and strike price S determined through Nash bargaining

H
H

H
H
H
H

KL

KG −0.01E(λΣ) 0 0.01E(λΣ)

−0.01E(λΣ)
$19.60/MWh $19.73/MWh $19.85/MWh

300.0 MW 282.8 MW 263.4 MW

0
$19.71/MWh $19.81/MWh $19.93/MWh

300.0 MW 300.0 MW 284.4 MW

0.01E(λΣ)
$19.81/MWh $19.91/MWh $20.01/MWh

300.0 MW 300.0 MW 300.0 MW

Table 3.4 reports Nash bargaining outcomes for the contract amount M and strike price

S as the price bias factors KG and KL are each systematically varied from −0.01E(λΣ) to

0.01E(λΣ). The no-bias case KG = KL = 0 provides a useful benchmark of comparison.

Relative to this benchmark, if LSE 2 underestimates λΣ, then the strike price S decreases;

and if LSE overestimates λΣ, then S increases. Conversely, relative to this benchmark, if G6

5The price bias results for the other risk-aversion treatments are qualitatively similar.
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underestimates λΣ, then S decreases; and if G6 overestimates λΣ, then S increases.

Also, moving from the lower-left to the upper-right cell of Table 3.4—that is, letting KG

increase and KL decrease together—the contract amount M is seen to systematically decrease.

Additional simulations were also conducted to search for combinations of the normalized

price-bias factors KG/E(λΣ) and KL/E(λΣ) such that the negotiated contract amount M was

zero, implying a no-contract outcome. These no-contract regions are depicted in fig. 3.9 for

three alternative specifications for the risk-aversion factors. As seen, for each risk-aversion

case the boundary of the no-contract region in the (KL/E(λΣ), KG/E(λΣ)) plane is a line and

the no-contract region is the half-plane bounded below by this no-contract line. An important

observation from fig. 3.9 is that the no-contract region shrinks in size as the traders become

more risk averse.

Figure 3.9 Lower boundary for the no-contract region in the plane of possi-

ble normalized price biases (KL/E(λΣ),KG/E(λΣ)) under three

alternative combinations of the risk-aversion factors (AL, AG)

3.8 Summary

This study analyzes Nash bargaining settlement outcomes for a contract-for-difference

(CFD) negotiation between a GenCo and an LSE facing price risk from uncertain LMP out-
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comes at a common bus location. Using both analysis and computational experiments, it is

shown that differing levels of risk aversion and biases in LMP estimations have systematic

effects on the negotiated contract amount and strike price, hence also on the post-contract net

earnings distributions for the GenCo and LSE. In addition, the circumstances in which the

two parties fail to reach an agreement is identified. These results could be used by market

participants in practice to aid their understanding of factors determining outcomes in bilateral

negotiation processes.

Future studies will consider more general contract negotiation problems involving both

financial and physical energy contracts between wholesale power market traders located at

possibly different buses. In this case full hedging of price risk can require traders to combine

CFDs with additional instruments, such as financial transmission rights, to take into account

LMP separation across buses due to transmission congestion.
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CHAPTER 4. CONCLUSION

4.1 Summary Assessment of Dissertation Contributions

This dissertation addresses two challenging issues related to wholesale power markets. The

first issue is the development of software platforms permitting the systematic experimental

study of power market performance. The second issue is how GenCos might best undertake

short-run financial risk management in restructured wholesale power markets operating under

LMP.

Chapter 2 discusses in some detail the collaborative development of a systematic method-

ology and software platform capable of evaluating new market designs from both engineering

and economic points of views. The software platform consists of a software implementation of

a multi-agent system on an agent-oriented middleware, known as the Java Agent Development

Framework (JADE). This platform fully complies with Foundation for Intelligent Physical

Agents (FIPA) standards and also allows extensions that facilitate the development of com-

plete agent-based applications.

As a case study, this software platform is used to study the market power mitigation (MPM)

rule implemented by CAISO, based on a similar rule used by PJM. The effectiveness of this

MPM rule is evaluated in the context of a realistic 225-bus WECC system with real heat

rate data and hourly time-varying load data and with strategic GenCos who have learning

capabilities permitting them to adaptively adjust their supply offers in a changing market

environment. In particular, an anticipatory reinforcement learning algorithm, Q-learning, is

used to model the supply offer behaviors of the GenCos. The simulation results provide insights

into how well the MPM rule is able to suppress implicit price collusion among pivotal GenCos

with market power.
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Chapter 3 proposed a four-stage process to manage financial risk in wholesale electric power

markets. The specific tools and techniques needed in the four-stage process are carefully dis-

cussed. This integrated and unified financial risk management framework can facilitate GenCos

and LSEs in their decision making with regard to day-ahead energy market trading, Financial

Transmission Rights (FTRs) auction participation, and bilateral contract negotiations.

The proposed financial risk management framework is utilized to analyze the financial

bilateral contract negotiation process between a GenCo and a LSE in a wholesale electric power

market with congestion managed by LMP. Nash bargaining theory is used to model a Pareto-

efficient settlement point. The model predicts negotiation results under varied conditions

and identifies circumstances in which the two parties might fail to reach an agreement. Both

analysis and simulation are used to gain insight regarding how relative risk aversion and biased

price estimates influence negotiated outcomes. The results derived from this study provide

useful guidance to market participants in their bilateral contract negotiation processes.

4.2 Limitations of the Proposed Methods and Further Research Directions

The limitations of the proposed methods and the potential research directions that they

point to are as follows.

In Chapter 2, the Q-learning algorithm that is tailored to model the generation unit’s

bidding strategies can only be applied to GenCo agents that own one generation plant. In the

future, coordinated learning schemes and decision strategies need to be developed for GenCos

agents that own multiple generation plants. In addition, the systematic methodology and

simulation platform presented in Chapter 2 is not only capable of evaluating market designs at

wholesale level but also analyzing market design issues at retail level. The lack of demand-side

participation in the electric power markets and the resulting market inefficiency clearly calls

for further research on retail market designs and its integration with wholesale electric power

market.

In Chapter 3, the financial bilateral contract negotiation problem is restricted to the case

where the GenCo and LSE are located at the same bus and facing the same price risk. The
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bilateral contract negotiation problem illustrated in Chapter 3 can be extended to consider

not only financial but also physical bilateral contracts between market participants that are

located at possibly different buses in the power system network. In this case full hedging of

price risk can require traders to combine CFDs with additional instruments, such as financial

transmission rights, to take into account LMP separation across buses due to transmission

congestion. In addition, the supply offer strategies of the GenCo and its opponents in the day-

ahead energy market could be incorporated into the negotiation problem framework. Another

extension would be to study a contract negotiation process among multiple GenCos and LSEs.
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APPENDIX A. Proof of Theorem 1 in Section 3.5.3

The proof of Theorem 1 follows directly from the proofs for Propositions 1–3, below.

Proposition 1: The expected values for λΣ derived under the three probability measures P , QG,

and QL satisfy (3.22) and (3.24).

Proof of Proposition 1: The expected value of λΣ derived under QG (with pdf fQG
) is given

by

EG(λΣ) =

∫ +∞

−∞

λΣfQG
(λΣ)dλΣ

=

∫ +∞

−∞

λΣfP (λΣ −KG)dλΣ (A.1)

Introducing the change of variables λ′

Σ = λΣ −KG,

EG(λΣ) =

∫ +∞

−∞

(λ′

Σ +KG)fP (λ
′

Σ)dλ
′

Σ

=

∫ +∞

−∞

λ′

ΣfP (λ
′

Σ)dλ
′

Σ +KG

∫ +∞

−∞

fP (λ
′

Σ)dλ
′

Σ

= EP (λΣ) +KG (A.2)

It can similarly be shown that EL(λΣ) = EP (λΣ) +KL. QED

Proposition 2: The VaR values for λΣ derived under P , QG, and QL satisfy

V aRG
α (λΣ −KG) = V aRP

α (λΣ) (A.3)

V aRL
α(λΣ −KL) = V aRP

α (λΣ) (A.4)

Proof of Proposition 2: V aRG
α (λΣ) and V aRP

α (λΣ) are defined as follows:

V aRG
α (λΣ) ≡ inf{Λ ∈ < : QG(λΣ > Λ) ≤ 1− α}

= inf{Λ ∈ < :

∫ +∞

Λ
fQG

(λΣ)dλΣ ≤ 1− α} (A.5)
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V aRP
α (λΣ) ≡ inf{Λ ∈ < : P (λΣ > Λ) ≤ 1− α}

= inf{Λ ∈ < :

∫ +∞

Λ
fP (λΣ)dλΣ ≤ 1− α} (A.6)

It follows from the definition of V aRG
α (λΣ) that

V aRG
α (λΣ −KG)

= inf{Λ ∈ < : QG(λΣ −KG > Λ) ≤ 1− α}

= inf{Λ ∈ < : QG(λΣ > Λ +KG) ≤ 1− α}

= inf{Λ ∈ < :

∫ +∞

Λ+KG

fQG
(λΣ)dλΣ ≤ 1− α}

= inf{Λ ∈ < :

∫ +∞

Λ+KG

fP (λΣ −KG)dλΣ ≤ 1− α} (A.7)

Introducing the change of variables λ′

Σ = λΣ −KG,

V aRG
α (λΣ −KG)

= inf{Λ ∈ < :

∫ +∞

Λ
fP (λ

′

Σ)dλ
′

Σ ≤ 1− α}

= V aRP
α (λΣ) (A.8)

It can similarly be shown that V aRL
α(λΣ −KL) = V aRP

α (λΣ). QED

Proposition 3: The CVaR values for λΣ derived under P , QG, and QL satisfy (3.23) and (3.25).

Proof of Proposition 3: Let Y denote any real-valued random variable measurable with

respect to a probability space (Ω,F , µ). Let α ∈ (0, 1), and let A denote the measurable

subset of points ω ∈ Ω such that Y (ω) ≥ V aRµ
α(Y ), which implies (by definition of VaR) that

µ(A) = [1− α]. Then CVaRµ
α(Y) is defined as follows:

CV aRµ
α(Y ) ≡

1

1− α

∫
A
Y dµ(Y ) (A.9)

Recall that fQG
is the pdf corresponding to the probability measure QG. It follows that

CV aRG
α (λΣ) =

1

1− α

∫ +∞

V aRG
α (λΣ)

λΣfQG
(λΣ)dλΣ

=
1

1− α

∫ +∞

V aRP
α (λΣ+KG)

λΣfP (λΣ −KG)dλΣ (A.10)
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Introducing the change of variables λ′

Σ = λΣ −KG,

CV aRG
α (λΣ)

=
1

1− α

∫ +∞

V aRP
α (λΣ+KG)−KG

(λ′

Σ +KG)fP (λ
′

Σ)dλ
′

Σ

=
1

1− α

∫ +∞

V aRP
α (λΣ)

λ′

ΣfP (λ
′

Σ)dλ
′

Σ

+
1

1− α
KG

∫ +∞

V aRP
α (λΣ)

fP (λ
′

Σ)dλ
′

Σ

=CV aRP
α (λΣ) +KG (A.11)

It can similarly be shown that CV aRL
α(λΣ) = CV aRP

α (λΣ) +KL. QED
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APPENDIX B. Proof of Theorem 2 in Section 3.6.2

This section provides a proof for Theorem 2 making use of four lemmas. For expositional

simplicity, throughout this appendix the α subscripts on all VaR and CVaR expressions are

omitted, as are the P -superscripts for all expectations, VaR, and CVaR expressions calculated

using the true probability measure P .

Lemma 1: CV aRL(−πL(M,S)) is convex in M for any S ∈ [SR, SU ].

Proof of Lemma 1: Let S ∈ [SR, SU ] be given. To prove that CV aRL(−πL(M,S)) is

convex in M , we need to show that, for arbitrary M1, M2, and 0 < λ < 1, the following

inequality holds,

CV aRL(−πL(λM1 + [1− λM2], S))

≤ λCV aRL(−πL(M1, S)) + (1− λ)CV aRL(−πL(M2, S)) (B.1)

Using the convexity of CVaR we have,

right =λCV aRL(−π0
L −M1(λΣ − TS))

+ (1− λ)CV aRL(−π0
L −M2(λΣ − TS))

≥CV aRL(−λπ0
L − λM1(λΣ − TS)

− (1− λ)π0
L − (1− λ)M2(λΣ − TS))

= CV aRL(−π0
L − [λM1 + (1− λ)M2](λΣ − TS))

= left (B.2)

QED

Lemma 2: Given any contract amount M ∈ [MR,MU ], varying the strike price S from SR to

SU maps under (3.10) and (3.14) into a straight line in U with slope −[1 +AL]/[1 +AG].
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Proof of Lemma 2: Using (3.9) and (3.13), we have

πG(M,S +∆S)− πG(M,S) = TM∆S (B.3)

πL(M,S +∆S)− πL(M,S) = −TM∆S (B.4)

Taking expectations on each side of equations (B.3) and (B.4),

EGπG(M,S +∆S)− EGπG(M,S) = TM∆S (B.5)

ELπL(M,S +∆S)− ELπL(M,S) = −TM∆S (B.6)

It follows immediately from the definition of CVaR (see Lemma 3) that CVaR is translation-

equivariant, i.e. CV aR(Y + c) = CV aR(Y ) + c. Thus

CV aRG(−πG(M,S +∆S))

= CV aRG(−πG(M,S)− TM∆S)

= CV aRG(−πG(M,S))− TM∆S (B.7)

Rearranging the terms in the above equation, we have

CV aRG(−πG(M,S +∆S))−CV aRG(−πG(M,S))

= − TM∆S (B.8)

Similarly, we have

CV aRL(−πL(M,S +∆S))−CV aRL(−πL(M,S))

= TM∆S (B.9)

The utility functions for GenCo G and LSE L are defined in (3.10) and (3.14). Using these

definitions, together with relationships (B.5), (B.6), (B.8), and (B.9), we have

uG(E
G(πG(M,S +∆S)), CV aRG(−πG(M,S +∆S)))

−uG(E
G(πG(M,S)), CV aRG(−πG(M,S)))

= TM∆S[1 +AG] (B.10)
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and

uL(E
L(πL(M,S +∆S)), CV aRL(−πL(M,S +∆S)))

−uL(E
L(πL(M,S)), CV aRL(−πL(M,S)))

= −TM∆S[1 +AL] (B.11)

It follows that

duG
dS

= TM [1 +AG] (B.12)

duL
dS

= −TM [1 +AL] (B.13)

Integrating both sides of equations (B.12) and (B.13) with respect to S, we have

uG + C1 = TM [1 +AG]S + C2 (B.14)

uL + C3 = −TM [1 +AL]S + C4 (B.15)

Multiply equations (B.14) and (B.15) by [1 + AL] and [1 + AG], respectively, and add the

resulting expressions. After rearranging terms,

[1 +AL]uG + [1 +AG]uL

= −[1 +AL]C1 + [1 +AL]C2 − [1 +AG]C3 + [1 +AG]C4 (B.16)

Totally differentiating this expression, it follows that

duL
duG

= −
1 +AL

1 +AG
(B.17)

QED

Lemma 3: With the strike price fixed at the lowest possible level, SR, the contract amount

interval from MR to MU maps under (3.10) and (3.14) into a concave curve in the utility

possibility set U .
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Proof of Lemma 3: Using (3.9),

EGπG(M +∆M,S)−EGπG(M,S)

=∆M [TS − EG(λΣ)]

=∆M [TS − E(λΣ)]−∆MKG

≡−∆δ −∆MKG (B.18)

Similarly,

ELπL(M +∆M,S)−ELπL(M,S)

=∆M [EL(λΣ)− TS]

=∆M [E(λΣ)− TS] + ∆MKL

=∆δ +∆MKL (B.19)

The rest of the proof will be divided into two cases that cover all possibilities.

Case 1: M > PG

CV aRG(−πG(M,S))

= CV aRG(−PGλΣ + COST −M [TS − λΣ])

= CV aRG((M − PG)λΣ + COST − TM S])

= (M − PG)CV aRG(λΣ) + COST − TM S (B.20)

Therefore, we have

CV aRG(−πG(M +∆M,S))− CV aRG(−πG(M,S))

= ∆M CV aRG(λΣ)−∆MTS

= ∆M [CV aR(λΣ)− TS] + ∆MKG ≡ ∆ε1 +∆MKG (B.21)
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Now,

∆uG ≡

uG(E
G(πG(M +∆M,S)), CV aRG(−πG(M +∆M,S)))

−uG(E
G(πG(M,S)), CV aRG(−πG(M,S)))

= −∆δ −∆MKG −AG(∆ε1 +∆MKG) (B.22)

Now calculate the (right) derivative of uG with respect to M :

duG
dM

= lim
∆M→0+

∆uG
∆M

= lim
∆M→0+

{
∆M [TS − E(λΣ)−KG]

∆M

+
−AG∆M [CV aR(λΣ) +KG − TS]

∆M
}

= TS − E(λΣ)−KG −AG CV aR(λΣ)−AGKG + TAGS (B.23)

Integrate both sides of the above equation and rearrange the terms we have,

uG =[TS − E(λΣ)−AGCV aR(λΣ)

+ TAGS − (1 +AG)KG]M + C5

=C6M + C5 (B.24)

From (B.24), M can be viewed as a function of uG. We can thus calculate the derivative

of uL with respect to uG as follows:

duL
duG

=
duL
dM

·
dM

duG

= [
dEL(πL(M,S))

dM
−AL

dCV aRL(−πL(M,S))

dM
]
1

C6
(B.25)

Taking the derivative of each side of (B.25) with respect to uG, we have

d2uL
du2G

=
1

C6
[
d2EL(πL(M,S))

dM2

dM

duG

−AL
d2CV aRL(−πL(M,S))

dM2

dM

duG
]

=
1

C2
6

[
d2EL(πL(M,S))

dM2

−AL
d2CV aRL(−πL(M,S))

dM2
] (B.26)
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Taking the expectation and then the derivative with respect to M on each side of equation

(3.11), we get

dEL(πL(M,S))

dM
= E(λΣ) +KL − TS (B.27)

Then obviously we have

d2EL(πL(M,S))

dM
= 0 (B.28)

Now equation (B.26) can be reduced to the following:

d2uL
du2G

= −AL
1

C2
6

d2CV aRL(−πL(M,S))

dM2
(B.29)

As shown in Lemma 1, CV aRL(−πL(M,S)) is convex in M. Consequently,

d2CV aRL(−πL(M,S))

dM2
≥ 0 (B.30)

It follows that

d2uL
du2G

= −AL
1

C2
6

d2CV aR(−πL(M,S))

dM2
≤ 0 (B.31)

Therefore, for Case 1 the curve of points (uG, uL) traced out in U space as M varies from MR

to MU is concave.

Case 2: M ≤ PG

CV aRG(−πG(M,S))

= CV aRG(−PGλΣ + COST −M(TS − λΣ))

= CV aRG(−λΣ(PG −M) + COST − TM S])

= (PG −M)CV aRG(−λΣ) + COST − TM S (B.32)

Therefore, we have

CV aRG(−πG(M +∆M,S))− CV aRG(−πG(M,S))

= −∆M CV aRG(−λΣ)−∆MTS

= −∆M [CV aR(−λΣ) + TS] + ∆MKG

≡ ∆ε2 +∆MKG (B.33)
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Now,

∆uG ≡

uG(E
G(πG(M +∆M,S)), CV aRG(−πG(M +∆M,S)))

−uG(E
G(πG(M,S)), CV aRG(−πG(M,S)))

= −∆δ −∆MKG −AG(∆ε2 +∆MKG) (B.34)

Now calculate the (right) derivative of uG with respect to M .

duG
dM

= lim
∆M→0+

∆uG
∆M

= lim
∆M→0+

{
∆M [TS − E(λΣ)−KG]

∆M

+
AG∆M [CV aR(−λΣ −KG) + TS]

∆M
}

= TS − E(λΣ)+AG CV aR(−λΣ) + TAG S − (1 +AG)KG (B.35)

Integrate both sides of the above equation and rearrange the terms we have,

uG = [TS − E(λΣ) +AG CV aR(−λΣ)

+ TAG S − (1 +AG)KG]M + C7

= C8M + C7 (B.36)

Similar to the derivation in Case 1, the second derivative of uL with respect to uG can be

calculated as

d2uL
du2G

= −AL
1

C2
8

d2CV aRL(−πL(M,S))

dM2
(B.37)

Given the inequality relationship in (B.30), we have

d2uL
du2G

= −AL
1

C2
8

d2CV aRL(−πL(M,S))

dM2
≤ 0 (B.38)

Therefore, for Case 2 the curve of points (uG, uL) traced out in U space as M varies from MR

to MU is once again concave. QED

Before moving onto Lemma 4, additional derivations are provided with regard to ∆uL,

which will be used in the following Lemma.
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As is well known, CV aR is convex in the following sense: For arbitrary (possibly dependent)

random variables Y1, Y2 and λ with 0 < λ < 1, CV aR(λY1 + (1− λ)Y2) ≤ λCV aR(Y1) + (1−

λ)CV aR(Y2). Hence we have,

CV aRL(−πL(M,S))−∆ε2 −∆MKL

=CV aRL(−π0
L −M(λΣ − TS)

+ ∆M(CV aR(−λΣ −KL) + TS))

=CV aRL(−π0
L −M(λΣ − TS)

+ CV aRL(−λΣ∆M + TS∆M)

=2{
1

2
CV aRL(−π0

L −M(λΣ − TS))

+
1

2
CV aRL(−λΣ∆M + TS∆M)}

≥2[CV aRL(
1

2
(−π0

L −M(λΣ − TS))

+
1

2
(−λΣ∆M + TS∆M)

=CV aRL(−π0
L − (M +∆M)(λΣ − TS))

=CV aRL(−πL(M +∆M,S)) (B.39)

Rearranging the terms in the above equation, we have

CV aRL(−πL(M +∆M,S))− CV aRL(−πL(M,S))

+∆MKL ≡ −∆ε′2 +∆MKL

≤ −∆ε2 = ∆M [CV aR(−λΣ) + TS] (B.40)

Hence, ∆uL can be derived as,

∆uL ≡

uL(E
L(πL(M +∆M,S)), CV aRL(−πL(M +∆M,S)))

−uL(E
L(πL(M,S)), CV aRL(−πL(M,S)))

= ∆δ +∆MKL +AL∆ε′2 (B.41)
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Similar to inequality (B.39) we have,

CV aRL(−πL(M +∆M,S)) + ∆ε1 +∆MKL

= CV aRL(−πL(M +∆M,S))

+ [CV aR(λΣ) +KL − TS]∆M

= 2{
1

2
CV aRL(−πL(M +∆M,S))

+
1

2
CV aRL(∆M(λΣ − TS))}

≥2CV aRL(
1

2
(−π0

L − (M +∆M)(λΣ − TS)

+ ∆MλΣ − TS∆M))

= CV aRL(−π0
L −M(λΣ − TS))

= CV aRL(−πL(M,S)) (B.42)

Rearranging the terms in the above equation, we have

CV aRL(−πL(M +∆M,S))− CV aRL(−πL(M,S))

+∆MKL ≡ −∆ε′1 +∆MKL

≥ −∆ε1 = −∆M [CV aR(λΣ)− TS] (B.43)

Hence, ∆uL can be derived as,

∆uL ≡

uL(E
L(πL(M +∆M,S)), CV aRL(−πL(M +∆M,S)))

−uL(E
L(πL(M,S)), CV aRL(−πL(M,S)))

= ∆δ +∆MKL +AL∆ε′1 (B.44)

Lemma 4: If SR is less than SR∗

as defined in (3.31), then with the strike price fixed at SR, as

the contract amount M increases, uG decreases and uL increases. If SU is greater than SU∗

as

defined in (3.32), then with the strike price fixed at SU , as the contract amount M increases,

uG increases and uL decreases.

Proof of Lemma 4:
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Part 1: Proof that if SR is less than SR∗

as defined in (3.31), then with the

strike price fixed at SR, as the contract amount M increases, uG decreases and uL

increases.

As shown in equation (B.41), ∆uL = ∆δ + ∆MKL + AL∆ε′2. As given in equation (B),

∆ε′2 ≥ ∆ε2 +∆MKL. Hence, we have

∆uL ≥ ∆δ +∆MKL +AL(∆ε2 +∆MKL) (B.45)

After substituting ∆δ and ∆ε2 into the above equation, we see that inequality (B.45) is

equivalent to

∆uL ≥∆M [E(λΣ)−

TSR +KL −ALCV aR(−λΣ)−ALTS
R +ALKL] (B.46)

Since, SR is less than E(λΣ)+(1+AL)KL−ALCV aR(−λΣ)
T (1+AL)

, and AL > −1, it can be shown that

the right hand side of the above inequality is greater than 0.

Therefore, with the strike price fixed at SR, as the contract amount M increases, uL

increases.

The rest of the proof will be divided into two cases that cover all possibilities.

Case 1: M > PG

As shown in equation (B.24), uG = C6M + C5. Since SR < E(λΣ)+AGCV aR(λΣ)+(1+AG)KG

T (1+AG) ,

and AG > −1, C6 < 0. Hence, in Case 1, with the strike price fixed at SR, when M increases,

uG decreases.

Case 2: M ≤ PG

As shown in equation (B.36), uG = C8M +C7. Since S
R < E(λΣ)−AGCV aR(−λΣ)+(1+AG)KG

T (1+AG) ,

and AG > −1, C8 < 0. Hence, in case 2, with the strike price fixed at SR, when M increases,

uG decreases.

Part 2: Proof that if SU is greater than SU∗

as defined in (3.32), then with the

strike price fixed at SU , as the contract amount M increases, uG increases and uL
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decreases.

As shown in equation (B.44), ∆δ + ∆MKL + AL∆ε′1. As given in equation (B), ∆ε′1 ≤

∆ε1 +∆MKL. Hence, we have

∆uL ≤ ∆δ +∆MKL +AL(∆ε1 +∆MKL) (B.47)

After substituting ∆δ and ∆ε1 into the above equation, we see that inequality (B.47) is

equivalent to

∆uL ≤∆M [E(λΣ)−

TSU +KL +ALCV aR(λΣ)−ALTS
U +ALKL] (B.48)

Since, SU is greater than E(λΣ)+(1+AL)KL+ALCV aR(λΣ)
T (1+AL)

, and AL > −1, it can be shown that

the right hand side of the above inequality is smaller than 0.

Therefore, with the strike price fixed at SU , as the contract amount M increases, uL

decreases.

The rest of the proof will be divided into two cases that cover all possibilities.

Case 1: M > PG

As shown in equation (B.24), uG = C6M + C5. Since SU > E(λΣ)+AGCV aR(λΣ)+(1+AG)KG

T (1+AG) ,

and AG > −1, C6 > 0. Hence, in Case 1, with the strike price fixed at SU , when M increases,

uG increases.

Case 2: M ≤ PG

As shown in equation (B.36), uG = C8M +C7. Since S
R > E(λΣ)−AGCV aR(−λΣ)+(1+AG)KG

T (1+AG) ,

and AG > −1, C8 > 0. Hence, in case 2, with the strike price fixed at SU , when M increases,

uG increases.

QED

Lemma 5: Consider the following two conditions:

duL(M,SL)

duG(M,SL)
|M=0 < −

1 +AL

1 +AG
(B.49)
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duL(M,SL)

duG(M,SL)
|M=MU > −

1 +AL

1 +AG
(B.50)

Inequality (B.50) is equivalent to inequality (3.33), and inequality (B.49) is equivalent to in-

equality (3.34).

Proof of Lemma 5:

Part 1: Proof that inequality (B.50) is equivalent to inequality (3.33)

Inequality (B.50) implies M > PG. Substituting equation (B.27) into (B.25), we have

duL
duG

= [E(λΣ) +KL − TS −AL
dCV aRL(−πL(M,S))

dM
]
1

C6
(B.51)

After substituting C6 into the above equation, we see that inequality (B.50) is equivalent to

−
E(λΣ) +KL − TS −AL

dCV aRL(−πL(M,S))
dM

E(λΣ)− TS +AGCV aR(λΣ)− TAGS + (1 +AG)KG

> −
1 +AL

1 +AG
(B.52)

Rearranging the terms in the above equation, we have

duL(M,SL)

duG(M,SL)
|M=MU> −

1 +AL

1 +AG
⇔

dCV aRL(−πL(M,SL))

dM
|M=MU>

AG −AL

AL(1 +AG)
E(λΣ)

−
AG(1 +AL)

AL(1 +AG)
CV aR(λΣ) +

1

AL
KL −

1 +AL

AL
KG + TS (B.53)

Part 2: Proof that inequality (B.49) is equivalent to inequality (3.34)

Inequality (B.49) implies M ≤ PG. Similar to equation (B.51), we now have

duL
duG

= [E(λΣ) +KL − TS −AL
dCV aRL(−πL(M,S))

dM
]
1

C8
(B.54)

After substituting C8 into the above equation, we see that inequality (B.49) is equivalent to

−
E(λΣ) +KL − TS −AL

dCV aRL(−πL(M,S))
dM

E(λΣ)− TS −AGCV aR(−λΣ)− TAGS + (1 +AG)KG

< −
1 +AL

1 +AG
(B.55)
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Rearranging the terms in the above equation, we have

duL(M,SL)

duG(M,SL)
|M=0< −

1 +AL

1 +AG
⇔

dCV aRL(−πL(M,SL))

dM
|M=0<

AG −AL

AL(1 +AG)
E(λΣ)

+
AG(1 +AL)

AL(1 +AG)
CV aR(−λΣ) +

1

AL
KL −

1 +AL

AL
KG + TS (B.56)

QED

Theorem 2: Given the stated restrictions on the CFD bargaining problem for G and L, and

given that the lowest strike price SR is less than SR∗

as defined in (3.31) and the highest strike

price SU is greater than SU∗

as defined in (3.32), the Nash barter set B for this problem is a

non-empty, compact, convex subset of <2, as follows:

Case 1. The barter set B is a compact right triangle when conditions (3.33) and (3.34) both

hold, cf. fig. 3.3.

Case 2. The barter set B reduces to the no-contract threat point when inequality (3.34) does

not hold, cf. fig. 3.4.

Case 3. The barter set B is a compact right triangle when (3.33) does not hold but (3.34)

holds, cf. fig. 3.5.

Proof of Theorem 2:

Before considering the shape of the utility possibility set U , first consider the following two

curves. The first curve V1 is the locus of points (uG, uL) traced out in U as M varies from MR

to MU , given a sufficiently small lowest strike price SR. The second curve V2 is the locus of

points (uG, uL) traced out in U as M varies from MR to MU , given a sufficiently large highest

strike price SU .

As proved in Lemma 3, the curve V1 is concave in U . Similarly, it can be proved that V2

is also concave in U . Moreover, as proved in Lemma 4, with the strike price fixed at SR, as

M increases, uG decreases and uL increases. Similarly, if the strike price is fixed at SU , as M

increases, uG increases and uL decreases. Therefore, at each point along V1 and V2 the slope
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is negative. Note, as proved in Lemma 2, given any contract amount M ∈ [MR,MU ], varying

the strike price S from SR to SU maps under (3.10) and (3.14) into a straight line in U with

slope −[1 + AL]/[1 + AG]. Hence, connecting the points on V1 and V2 that have the same

contract amount M , we have straight lines with a slope of −[1 + AL]/[1 + AG]. In addition,

every single point on these straight lines belongs to U .

The proof of Theorem 2 will be divided into three parts corresponding to the three possible

cases in the statement of the theorem.

Case 1:

When following the proof below, please refer to fig. B.2. As shown in Lemma 5, when

conditions (B.49) and (B.50) both hold, the slope of V1 at the threat point is smaller than

− 1+AL

1+AG
; and, when M = MU , the slope of V1 is greater than − 1+AL

1+AG
. Therefore, since V1

is concave, the slope of V1 must steadily increase from below − 1+AL

1+AG
to over − 1+AL

1+AG
as M

increases from 0 to MU , and uG correspondingly decreases.

By following steps similar to that of Lemma 3, it can be shown that V2 is also concave.

Moreover, the slope of V2 at the threat point is larger than − 1+AL

1+AG
. This statement can be

proved by contradiction. Assume that, when the slope of V1 at the threat point is smaller

than − 1+AL

1+AG
, the slope of V2 at the threat point is also smaller than − 1+AL

1+AG
. This situation is

plotted in fig. B.1. Pick a point Z on V1 above the straight line with a slope of − 1+AL

1+AG
which

passes the threat point. By construction, Z takes the form Z = (uL(M
′, SR), uG(M

′, SR)).

According to Lemma 2, the point (uL(M
′, SU ), uG(M

′, SU )) on V2 together with Z must be on

a straight line with a slope of − 1+AL

1+AG
. Therefore, the point (uL(M

′, SU ), uG(M
′, SU )) on V2

must be above the straight line with a slope of − 1+AL

1+AG
that passes through the threat point.

However, since the initial slope of V2 is smaller than − 1+AL

1+AG
, and V2 is concave, no point on

V2 is above this straight line. This contradicts Lemma 2, which completes the proof.

As proved in Lemma 2, all the points that belong to the utility possibility set U are on

parallel lines with one end on V1 and with a slope of −[1 + AL]/[1 + AG]. Hence, the typical

utility possibility set U for Case 1 is as shown in fig. B.2.

Since the slope of V1 gradually increases from below − 1+AL

1+AG
to above − 1+AL

1+AG
, there exists
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Figure B.1 Supporting graph for proving that the slope of V2 at the threat
point is larger than − 1+AL

1+AG
when the slope of V1 at the threat

point is smaller than − 1+AL

1+AG
.

a contract amount M∗ that satisfies duL(M
∗,SR)

duG(M∗,SR)
= − 1+AL

1+AG
.

Using the results proved in Lemma 2, M∗ should also satisfy duL(M,SU )
duG(M,SU )

= − 1+AL

1+AG
. Define

X = (uL(M
∗, SR), uG(M

∗, SR)), and define Y = (uL(M
∗, SU ), uG(M

∗, SU )). Suppose that

[1 +AL]uG(M
∗, SR) + [1 +AG]uL(M

∗, SR) = C1.

Since V1 is concave, it follows from the initial slope and end slope that all the points

(uG, uL) on V1 satisfy [1+AL]uG+[1+AG]uL ≤ C1. As proved in Lemma 2, all the points that

belongs to U are on parallel lines with one end on V1 and with a slope of −[1 +AL]/[1 +AG].

Hence, all the points in U except the points on the straight line between X and Y satisfy

[1 +AL]uG + [1 +AG]uL ≤ C1.

Now draw a horizonal line and a vertical line from the threat point. As shown in fig. B.2,

let I denote the point where the vertical line intersects with the straight line between X and Y ,

and let J denote the point where the horizonal line intersects with the straight line between X

and Y . By definition, the right triangle IζJ constitutes the Case-1 barter set, which is clearly

non-empty, compact, and convex.

Case 2:

When following the proof below, please refer to fig. B.3. Suppose that [1 + AL]ζ1 + [1 +

AG]ζ2 = C2. As shown in Lemma 5, when condition (B.49) fails to hold, duL(M,SR)
duG(M,SR)

|M=0 ≥ −
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Figure B.2 Type 1 utility possibility set U and barter set B for GenCo G
and LSE L. The barter set is a right triangle.

Figure B.3 Type 2 utility possibility set U and barter set B for GenCo G
and LSE L. The barter set reduces to the non-contract threat
point.

1+AL

1+AG
.

Because V1 is concave, all the points (uG, uL) on V1 satisfy [1+AL]uG+ [1+AG]uL ≤ C2.

As proved in Lemma 2, all the points that belong to the utility possibility set U are on parallel

lines with one end on V1 and with a slope of −[1 +AL]/[1 +AG]. Hence, all the points in the

utility possibility set U satisfy [1 +AL]uG + [1 +AG]uL ≤ C2.

Therefore, the threat point is the only point in the utility possibility set U that satisfies

both uG ≥ ζ1 and uL ≥ ζ2. This can be proved by contradiction. Suppose there is another

point (u′G, u
′

L) in U apart from the threat point that satisfies both u′G ≥ ζ1 and u′L ≥ ζ2. Then,
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[1 + AL]u
′

G + [1 + AG]u
′

L > C2. This contradicts our previous conclusion that all points in U

satisfy [1 + AL]uG + [1 + AG]uL ≤ C2. It follows that the Case-2 barter set reduces to the

threat point. The typical shapes of the utility possibility set U and the barter set B for Case

2 are thus as shown in figure B.3.

Case 3:

Figure B.4 Type 3 utility possibility set U and barter set B for GenCo G
and LSE L. The barter set is a right triangle.

When following the proof below, please refer to fig. B.4. LetN = (uG(M
U , SR), uL(M

U , SR))

denote the endpoint of the curve V1. As shown in Lemma 5, when condition (B.49) holds but

condition (B.50) fails to hold, the slope of V1 at the threat point is smaller than − 1+AL

1+AG
and

the slope of V1 at N is also smaller than − 1+AL

1+AG
.

Again, as shown in Lemma 2, all the points that belongs to U are on parallel lines with

one end on V1 and a slope of −[1+AL]/[1+AG]. Since V1 is concave, the typical Case-3 shape

of U is as shown in fig. B.4.

Let W = (uG(M
U , SU ), uL(M

U , SU )) denote the point on curve V2 corresponding to

(MU , SU ). Let C3 = [1 +AL]uG(M
U , SR) + [1 +AG]uL(M

U , SR).

Given the above findings for the endpoints of V1, together with the concavity of V1, it follows

that all the points (uG, uL) on V1 satisfy [1 + AL]uG + [1 + AG]uL ≤ C3. Again, as proved in

Lemma 2, all the points that belong to U lie on parallel lines with one end on V1 and with a

slope of −[1 +AL]/[1 +AG]. Hence, all the points in U satisfy [1 +AL]uG + [1+AG]uL ≤ C3.
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Now draw a horizonal line and a vertical line from the threat point. Let the point where

the vertical line intersects with the straight line between N and W be denoted by I, and let the

point where the horizonal line intersects with the straight line between N and W be denoted

by J . As shown in fig. B.4, the right triangle IζJ constitutes the Case-3 barter set B by

definition. Clearly B is non-empty, compact, and convex.

QED
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